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Passive acoustic monitoring reveals the limited distribution of an indicator
species, the White-headed Woodpecker (Leuconotopicus albolarvatus), in
the northern Blue Mountains, USA

El monitoreo acustico pasivo revela la distribucion limitada de una especie indicadora,
el Carpintero de Cabeza Blanca (Leuconotopicus albolarvatus), en las Montaias
Azules del norte, EE. UU.

Adrianna J_Ferris®, Adam Duarte?® , Jamie Ratliff* and Ben J_ Vernasco"**

ABSTRACT. Indicator species can facilitate the assessment, management, and conservation of biodiversity. The White-headed
Woodpecker (Leuconotopicus albolarvatus) is a species of conservation concern that is considered an indicator species for mature
ponderosa pine ecosystems, a priority restoration habitat that has declined by 90% in the northern Blue Mountains, USA. Here, we
employed passive acoustic monitoring at 227 randomly selected locations across two National Forests in the northern Blue Mountains.
Autonomous recording units were deployed for an average of 4.41 weeks per station (SD = 1.21) and audio recordings were processed
with BirdNETv2.4. White-headed Woodpecker predictions were manually reviewed to create detection/non-detection data. We
estimated occupancy and detection probabilities using a Bayesian occupancy model and compared the habitat suitability between
occupied and unoccupied sites. Naive occupancy was 7.5%, and the estimated proportion of sites occupied was 0.08 (95% Credible
Interval: 0.075, 0.092). The average weekly detection probability was 0.71 (0.60, 0.80), indicating we detected the species with little error
when present. Following model selection, we found the odds of occupancy were 5.26 times lower for every 2.87 m?ha increase in
lodgepole pine basal area. Sites considered occupied were also found to have higher values of a habitat suitability metric currently used
toinformland management decisions. Low occupancy of White-headed Woodpeckers potentially indicates the northern Blue Mountains
cannot currently support a broad distribution of an indicator species for mature ponderosa pine forests. More broadly, this study
provides insight into the condition of a regional, priority restoration habitat and provides important information for forest management.

RESUMEN. Las especies indicadoras pueden facilitar la evaluacion, el manejo y la conservacion de la biodiversidad. El Carpintero
de Cabeza Blanca (Leuconotopicus albolarvatus) es una especie de interés para la conservacion considerada como especie indicadora
delos ecosistemas maduros de pino ponderosa, un habitat prioritario para la restauracion que ha disminuido en un 90% en las Montaias
Azules del norte, EE. UU. En este estudio, empleamos monitoreo acustico pasivo en 227 sitios seleccionados aleatoriamente en dos
Bosques Nacionales de las Montafias Azules del norte. Se instalaron unidades de grabacién auténomas durante un promedio de 4,41
semanas por estacion (DE = 1,21) y las grabaciones de audio se procesaron con BirdNET v2.4. Las predicciones del Carpintero de
Cabeza Blanca fueron revisadas manualmente para generar datos de deteccion/no deteccion. Estimamoslas probabilidades de ocupacion
y deteccion mediante un modelo bayesiano de ocupacion y comparamos la idoneidad del habitat entre sitios ocupados y no ocupados.
La ocupacién ingenua fue del 7,5%, y la proporcion estimada de sitios ocupados fue 0,08 (intervalo creible del 95%: 0,075-0,092). La
probabilidad media semanal de deteccion fue 0,71 (0,60-0,80), lo que indica que detectamos la especie con poco error cuando estuvo
presente. Tras la seleccion de modelos, encontramos que las probabilidades de ocupacion fueron 5,26 veces menores por cada aumento
de 2,87 m?*ha en el area basal de pino contorta. Los sitios considerados ocupados también presentaron valores mas altos de una métrica
de idoneidad del habitat utilizada actualmente para informar decisiones de manejo del territorio. La baja ocupacion del Carpintero
de Cabeza Blanca indica potencialmente que las Montafas Azules del norte no pueden sostener actualmente una distribuciéon amplia
de una especie indicadora de los bosques maduros de pino ponderosa. De manera mas general, este estudio aporta informacion sobre
el estado de un habitat regional prioritario para la restauracion y proporciona informaciéon importante para el manejo forestal.
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INTRODUCTION

A species’ breeding distribution is determined by the extent of
ecosystems that contain resources associated with their survival,
reproduction, and population viability (Patton 1992). The
presence of certain species of wildlife (e.g., habitat specialists) can
therefore act as indicators of the resources and attributes present
in an area, which reflect more broadly, ecosystem function and
integrity (Lambeck 1997, Canterbury et al. 2000, Betts et al. 2024,
Brunk et al. 2025). For example, the Black-backed Woodpecker

(Picoides arcticus) is used as an indicator of ecosystem responses
to management actions in burned forests (U.S. Forest Service
Pacific Southwest Region 2007). Similarly, the Three-toed
Woodpecker (Picoides tridactylus) is used as an indicator of
structural diversity and bird species richness in boreal forests
(Roberge et al. 2008, Pakkala et al. 2018). The relationships
between indicator species and ecosystem health, species diversity,
and management outcomes highlights the utility of monitoring
their populations to inform forest management.
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The Blue Mountains of northeastern Oregon and southeastern
Washington, USA is a highly complex and heavily managed
landscape that has historically lacked a robust wildlife monitoring
program. The region was once covered by a mosaic of ponderosa
dry forest, mesic mixed conifer forest, riparian woodland, and
various shrublands and grasslands (Altman and Bresson 2017,
Hanberry et al. 2020). However, late successional ponderosa pine-
dominated forests have substantially declined in the region. The
decline is attributed to a combination of insect pathogens, the
preferential harvest of old-growth ponderosa pine trees for
human goods and services, and a long-standing effort to suppress
fire in this historically fire-adapted landscape (Hessburg et al.
1994, Johnston et al. 2025). Many forested areas in the region
have therefore transitioned to dense stands of mid-successional
fir-dominated forests (Altman and Bresson 2017, Hanberry et al.
2020). More recently, there has been a concerted effort to restore
these forests to their historical structure and composition for
various objectives including improving ecosystem health,
reducing wildfire risk, and providing a sustainable supply of
timber.

White-headed Woodpeckers (Leuconotopicus albolarvatus) are a
species of conservation concern (Kozma et al. 2025) that are
considered an effective indicator species for mature ponderosa
pine ecosystems with open understories, varying canopy cover,
and snags (Latif et al. 2015, Altman and Bresson 2017). White-
headed Woodpeckers commonly nest in 25-50 cm diameter-at-
breast height sized snags in areas of varying fire severity with high
amounts of edge habitat (i.e., > 75 m/ha; Latif et al. 2015, Lorenz
et al. 2015). White-headed Woodpeckers mainly eat seeds from
large-coned pines like the ponderosa pine, but will supplement
their diet with insects, including wood boring beetles (Buprestidae)
found in dead wood and recently burned stands (Kozma et al.
2025, Stillman et al. 2022). Despite our ecological understanding
of White-headed Woodpeckers, there is a large knowledge gap
related to the distribution of this indicator species in the northern
Blue Mountains because of a lack of a targeted monitoring effort
in the region. Quantifying the distribution of White-headed
Woodpeckers in the Blue Mountains can aid our understanding
of the forest ecosystems and help with the restoration of
ponderosa pine ecosystems in the region.

In 2021, we evaluated the efficacy of passive acoustic monitoring
(PAM) to detect White-headed Woodpecker in mixed ponderosa
pine forests within two watersheds on the Wallowa-Whitman
National Forest that were known to be occupied by the species.
We found PAM was more effective and efficient than traditional
survey techniques (i.e., playback surveys) at detecting White-
headed Woodpeckers when making inferences across multiple
sampling stations in remote forest environments (Gaylord et al.
2023). In this study, our objectives were to (1) describe the
distribution of White-headed Woodpeckers on the Umatilla and
Wallowa-Whitman National Forests, (2) identify ecologically and
management relevant habitat variables associated with forest
structure and composition related to White-headed Woodpecker
occurrence, and (3) examine the relationship between White-
headed Woodpecker occurrence and an independently created
White-headed Woodpecker Habitat Suitability Index (i.e., Latif
et al. 2015) currently used in land management decision making.
Habitat suitability models can have limited accuracy when applied
outside the region used to develop them (Latif et al. 2020). Our
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analysis therefore provides essential information on if the habitat
suitability model is accurately identifying habitat that currently
supports breeding White-headed Woodpeckers. Last, we use
previously reported White-headed Woodpecker juvenile dispersal
distances (Lorenz et al. 2024) to understand the extent to which
juvenile dispersal may be limiting the colonization of suitable
White-headed woodpecker habitat. To accomplish our objectives,
we expanded the PAM effort to gather detection/non-detection
data for the White-headed Woodpeckers across the Umatilla and
Wallowa-Whitman National Forests. We then used Bayesian
occupancy modeling to quantify occurrence probability while
correcting for imperfect detection (Royle and Kéry 2007,
MacKenzie et al. 2017). As a whole, our study promotes the
conservation and understanding of a priority indicator species in
a relatively data deficient area.

METHODS

Study location

We conducted PAM surveys on the Umatilla and the Wallowa-
Whitman National Forest in the northern Blue Mountains, USA.
The northern Blue Mountains are made up of multiple different
mountain ranges that include many canyons and valleys that
range between 762 and 2700 meters above sea level in elevation.
Low elevation habitats receive less than 25 cm of precipitation
while higher elevation, mountainous areas can receive > 203 cm
of precipitation (Altman and Bresson 2017). As part of the
Collaborative Forest Landscape Restoration Program, the U.S.
Forest Service is implementing forest treatments (i.e., commercial
logging, non-commercial thinning, prescribed fire) to promote
the restoration of the historical forest structure and composition
in the northern Blue Mountains. Specific restoration goalsinclude
creating open forest structures with fire-resistant tree species,
reducing the prevalence of true firs, and enhancing the overall
heterogeneity of the forests to promote forest health.

Data collection

We used a 500-hectare hexagon tessellation sampling frame that
spanned both National Forests to select the sampling locations
in 2022 and 2023 (Fig. 1). In 2022, we used a stratified random
sampling design to select 44 hexagons to sample by first grouping
hexagons based on their proposed forest treatment types (i.e.,
commercial thinning, non-commercial thinning, prescribed
burns, and no treatment). In 2023, we used the same sampling
frame but selected hexagons using simple random sampling (i.e.,
we did not group by proposed treatments before selecting). Before
selecting locations to sample, we omitted hexagons that contained
relatively little forest-capable lands (< 25% in 2022 and < 50% in
2023; Davis et al. 2015), were deemed unsafe for fieldwork, and/
or largely comprised wilderness areas or experimental forests. We
established up to four stations per hexagon, resultingin 172 survey
stations in 2022 and 170 survey stations in 2023. We placed
stations at least 500 m from other stations, 200 m from the edge
of the hexagon, and, to reduce noise interference and theft, 50 m
from a path, road, or loud running water. To maximize
consistency in the quality of recordings across stations, we
mounted all autonomous recording units (ARUs) on trees with a
diameter-at-breast height of <30 cm atapproximately 1.5 mabove
ground level, and we cleared branches within 30 cm of the ARU
microphones. We used a combination of Wildlife Acoustics Song
Meter 4 units, Song Meter 4 Mini units, and Song Meter 4 Mini
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Fig. 1. Map of the Umatilla (dark brown) and Wallowa-
Whitman (light brown) National Forests. Black circles and blue
diamonds indicate locations where recording units were
deployed between 1 May and 31 June in 2022 and 2023. Shaded
area within each national forest denotes the extent of the
sampling area defined by amount of forested habitat and land
ownership. Inset map shows the study area in relation to
Oregon, Washington, and Idaho.

. 2023
Sampling Area

[ Umatilla NF

[ Wallowa-Whitman NF

Bat units equipped with acoustic microphone stub attachments
to collect soundscape recordings. These ARUs all have external
microphones and have very similar sensitivity and signal to noise
ratios. The differences in recording units are unlikely to influence
our ability to detect White-headed Woodpecker vocalizations in
ameaningful way, particularly given our study objectives (Wildlife
Acoustics [date unknown]). We collected soundscape recordings
during the breeding season of the White-headed Woodpecker,
from mid-May to early July in 2022 and early May through early
September in 2023. We programmed ARUs to record
continuously for two hours before and after sunrise, one hour
before and three hours after sunset, and the first 10 minutes of
every hour not included in the continuous recording period. For
more details related to the sampling design see Duarteetal. (2024).

Audio processing and validation

Before processing audio recordings, we first narrowed the
monitoring period to only include recordings collected between
1 May to 31 June. This filtering scheme focused our processing
efforts on recordings collected during the White-headed
Woodpecker nesting period, as the home range of the species
changes outside of this time window (Lorenz et al. 2015). We then
processed audio recordings with Bird NET v.2.4 (Kahl et al. 2021).
We filtered White-headed Woodpecker predictions to those with
confidence scores 0.5 to prioritize reviewing high confidence
predictions (Pérez-Granados 2023) and reduce the effort
associated with the manual review process. We grouped BirdNET
predictions by station and sampling week and treated each seven-
day period as a unique sampling occasion or survey period. We
then randomly selected up to 50 predictions per station per survey
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period (i.e., 1 week of monitoring) for manual review. We
randomly selected the 50 predictions to prioritize selecting
temporally independent predictions. This resulted in 1889
predictions for manual review. We used the Simple Passive
Acoustic Monitoring protocol, as described in Vernasco et al.
(2025), to conduct manual review. This protocol facilitates
efficient review by allowing reviewers to simultaneously listen to
audio and inspect spectrograms of BirdNET predictions. We
marked each reviewed prediction as a true- or false-positive
prediction. We classified a BirdNET prediction as a true-positive
prediction based on the presence of a White-headed Woodpecker
specific call type that we could confidently identify (i.e., the three-
or four-note “pee-kik-kik” call). We required three true-positive
predictions for White-headed Woodpecker to be considered
detected at a station within a survey period (i.e., week). We chose
a threshold of three to minimize the likelihood of false positives
(i.e., classifying an unoccupied site as occupied because of a
transient or dispersing individual, for example) and managed the
amount of effort associated with manual review process.
Additionally, as shown in Table 1 of Gaylord et al. (2023), sites
with greater than three White-headed Woodpecker detections
were also found to have an average of 17 days with detections,
indicating three detections reflects birds consistently using an
area.

Estimating BirdNET precision and recall

We used two sources of data to estimate Bird NET’s precision and
recall, metrics that are essential to understanding the reliability
of an acoustic classifier. Precision is the number of true positive
predictions divided by the total number of true positive and false
positive BirdNET predictions. Recall is the number of true
positive predictions divided by the total number of true positive
and false negative predictions.

To estimate precision, we selected the first three reviewed
predictions from each week of each station (n = 870 predictions).
These first three predictions represent three randomly selected
predictions above a confidence score 0.5. We selected up to the
first three predictions reviewed because the manual validation
approach used to review predictions herein (i.e., stopping upon
the third positive prediction) causes the dataset as a whole to
contain a greater number of false positive predictions. We
calculated precision by dividing the number of true positive
predictions by the total number of predictions selected for
estimating precision. To estimate recall, we used a selection of
White-headed Woodpecker vocalizations gleaned from audio
recordings collected as part of a separate PAM study from the
same region (i.e., Gaylord et al. 2023). White-headed Woodpecker
vocalizations were identified by manually scanning the recordings.
Audio segments containing the vocalization were extracted by
selecting the time the vocalization began to the time preceding
when there was two seconds of audio with no White-headed
Woodpecker vocalization. This two second buffer ensures that
there is a White-headed Woodpecker call within every three
second segment of audio, the duration of BirdNET’s detection
window. After identifying the length of the audio clip, a half
second buffer was added to the beginning and end of the audio
segment. The duration of each audio segment was then trimmed
to the nearest multiple of three to ensure only complete 3 second
windows were considered. We determined the potential number
of White-headed Woodpecker predictions based on the length of
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Table 1. Environmental covariates considered in the initial occupancy and detection models. We selected these variables as they represent
prominent tree species in the region and habitat variables that capture aspects of forest structure that are ecologically relevant to White-
headed Woodpeckers (Leuconotopicus albolarvatus) and relevant to forest management. Basal area was measured in m*ha. We indicate
in the source column which dataset was used to generate the covariate data. We indicate if the covariate was used in the occupancy or
detection model in the Model column. The mean, standard deviation, min, and max value of each variable is presented in Table Al.1.

Covariate name Description Source Model
Grand Fir Basal Area Basal area of Grand Fir (A4bies grandis) LEMMA Occupancy
Western Larch Basal Area Basal area of western larch (Larix occidentalis) LEMMA Occupancy
Douglas Fir Basal Area Basal area of Douglas fir (Pseudotsuga menziesii) LEMMA Occupancy
Ponderosa Pine Basal Area Basal area of ponderosa pine (Pinus ponderosa) LEMMA Occupancy
Lodgepole Pine Basal Area Basal area of lodgepole pine (Pinus contorta) LEMMA Occupancy
Vegetation Height Average height of all vegetation, measured in meters LANDFIRE Occupancy
Canopy Cover SD Average standard deviation in percent canopy cover of all live trees LEMMA Occupancy
Canopy Cover Average percent canopy cover of all tree species LEMMA Detection
Elevation Average elevation of survey station, measured in meters above sea level LANDFIRE Detection
Day of Year Day of year of the first day of each survey period Detection
Monitoring Hours Number of hours of audio recordings collecting per survey period Detection
Monitoring Year Categorical variable denoting if the station was sampled in 2022 or 2023 Detection

the audio segment (e.g., three seconds = 1 potential prediction, 6
seconds = 2 potential predictions, etc.). All audio segments were
then processed with BirdNET using the default settings, as
described above. We filtered the BirdNET predictions to those
with a confidence score 0.5 to match the threshold we used in the
review of prediction data used for our study. We then calculated
recall by dividing the total number of White-headed Woodpecker
predictions by the total number of 3 second audio segments
containing White-headed Woodpecker vocalizations.

Data analysis

We fit a single species, single season Bayesian occupancy model
(Royle and Kéry 2007, MacKenzie et al. 2017) to the detection/
non-detection data to quantify the probability of White-headed
Woodpecker occupancy at a station, while accounting for the
possibility that the species may sometimes go undetected even
when present at a station. We considered ecologically and
management relevant covariates describing forest structure and
composition in the occupancy model and sampling-related
covariates in the detection model.

Our habitat variables include the amount of prominent tree
species, measured in basal area (m*ha), and characteristics of
forest structure previously found to be ecologically relevant to
White-headed Woodpecker occurrence (Table 1). We quantified
habitat variables within a 200 m radius, circular buffer centered
on each survey station to capture the habitat characteristics while
also minimizing overlap between spatially adjacent stations (Table
1). We gathered data for each tree species from the latest data
provided by the Landscape Ecology, Modeling, Mapping &
Analysis (LEMMA) research group (Bell et al. 2024). We also
gathered data on forest structure from the LANDFIRE database
(LANDFIRE 2016). All variables were measured on a 30-m pixel
resolution and average or sum values were calculated using a
moving window analysis in the terra package (Hijmans 2023).
Although ecologically relevant, we did not consider the fire
history of the area because only 27 of our stations have burned
at any severity in the last 10 years. Examining the effects of fire
requires consideration of the time since fire because of the
successional changes that occur and even fewer of our sites have
burned within ecologically relevant time intervals (i.e., 1 year since
n = §, 2-5 years since n = 12, and 6-10 years since fire n = 7).

We considered detection covariates that are likely to influence our
ability to detect White-headed Woodpeckers. We included the
hours of audio recordings collected each survey period to control
for differences in sampling amounts. We also considered the Julian
day of the first day of the sampling week to capture potential
seasonal changes in White-headed Woodpecker vocalizations.
Because forest structure can influence how sound travels, we
included the average canopy cover for each station calculated
using a 200m radius, circular buffer centered on each survey
station. Last, forest structure and species abundance can change
with elevation and we therefore also included an effect of elevation
on our detection covariate.

We conducted model selection using indicator variables (Kuo and
Mallick 1998). Specifically, we multiplied each model coefticient
by a latent binary variable, where a covariate is included in the
model when the indicator variable equals one. Each indicator
variable was assigned a Bernoulli prior, assigning equal prior
probability (0.5) of including or excluding each covariate. In this
process, each unique sequence of indicator variables (i.e.,
combinations of ones and zeroes across detection and occupancy
covariates) represents a candidate model (Royle et al. 2014). We
used the model structure with the highest posterior probability
for inference (Table 2). To help with model fitting and to ensure
covariates did not artificially drop out, we implemented this
model selection approach using slab-and-spike priors (Mitchell
and Beauchamp 1988). To do so, we first fit the global model
without indicator variables using uninformative priors. We then
used the resulting coefficient estimates and their standard
deviations for the values of the spike priors. This process ensures
the informed prior distributions are near the posterior
distribution for each coefficient, as recommended by Dellaportas
et al. (2002).

We fit models using JAGS (Plummer 2003), in program R v4.2.0
(R Core Team 2022) using the jagsUI package (Kellner 2024).
Before models were fit, we rescaled all continuous variables to
have a mean of zero and a standard deviation of one. We inspected
correlations between variables to ensure that all correlation
coefficients were > -0.7 and < 0.7. We included a random effect
of hexagon ID on occupancy probability to account for any
potential spatial autocorrelation associated with the spatially
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Table 2. Top 10 supported models identified by model selection.

The posterior probability indicates the proportion of iterations a
given model was observed. Detection covariates describe the
covariates included in the detection model, while occupancy
covariates describe those included in the occupancy model.

Posterior Detection Occupancy covariates

probability  covariates

0.026 Lodgepole Pine BA

0.017 Larch BA, Lodgepole Pine BA

0.016 Lodgepole Pine BA, Canopy Cover SD

0.014 Larch BA, Lodgepole Pine BA, Canopy Cover SD
0.011 Grand Fir BA, Lodgepole Pine BA

0.01 Year Lodgepole Pine BA

0.01 Canopy Cover Lodgepole Pine BA

0.009 Grand Fir BA, Lodgepole Pine BA, Canopy Cover SD
0.008 Lodgepole Pine BA, Ponderosa Pine BA

0.008 Larch BA

clustered stations within our hexagonal sampling design. We used
uninformative priors with a mean of zero and precision of 0.368
for all model intercepts and coefficients. We also used an
uninformative prior for the variance of the random effect by
specifying a uniform distribution that ranged from 0 to 20. We fit
models using three independent chains, each consisting of 20,000
iterations with a burn-in and adaption phase of 10,000 each. All
parameters converged (< 1.01; Brooks and Gelman 1998). We
used the top-supported modelidentified using the model selection
process described above (i.e., indicator variables) to estimate
occupancy and detection probability. We describe model
parameters using their mean values and 95% credible intervals
(CIs) and report results using the odds ratios (i.e., the odds of
detection or occupancy for every 1 standard deviation change in
the covariate; Hosmer et al. 2013) of model coefficients found to
be important to occurrence. Last, we assessed the fit of the global
model using a posterior predictive check by calculating the
Bayesian p-value (Gelman et al. 1996). Specifically, we simulated
data using the estimated model, calculated the sum of the absolute
value of residuals of our simulated data and our empirical data,
and estimated the Bayesian p-value as the proportion of times the
simulated data were more extreme (i.e., had a larger sum of the
absolute value of residuals) than our empirical data (Kéry 2010).

Evaluating the habitat suitability index

To evaluate the habitat suitability index produced by Latif et al.
(2015), we compared the habitat suitability index at sites where
White-headed Woodpeckers were and were not detected. The
habitat suitability index was created using habitat data at White-
headed Woodpecker nest locations collected within the eastside
of the Cascade Mountains of Oregon. The specific habitat
variables included in the index are topographical characteristics
(i.e., slope, aspect), local- and landscape-scale canopy cover,
proportional area of ponderosa pine forest, and the density of
habitat edges (for additional details see Latif et al. 2015). The
habitat suitability metric represents an estimated relative
probability of habitat use quantified using Maxent (Phillips et al.
2006). We compared the relationship between White-headed
Woodpecker occurrence and the habitat suitability at two spatial
scales using linear regression. The first spatial scale we evaluated
was at the station level. We calculated the average habitat
suitability index for each station using a 200m radius, circular
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buffer centered on the station location. We included a random
effect of hexagon ID to account for spatially clustered stations
and fit the model using the Ime4 package (Bates et al. 2015). The
second spatial scale was at the hexagon level. We calculated the
average habitat suitability index for each 500 ha hexagon and fit
the model in Program R (R Core Team 2022).

RESULTS

During the White-headed Woodpecker nesting period, we
monitored 294 stations for an average of 244.8 hours (SD = 105.6
hours) and 3.46 weeks (SD = 1.24 weeks), with 56% of ARUs
recording for 4 weeks (Fig. 1, Fig. A.1). Our manual review of
audio recordings from Gaylord et al. (2023) generated 1039 three
second audio segments containing White-headed Woodpecker
vocalizations. Of those, 856 were three seconds long, 92 were six
seconds long, 48 were nine seconds long, 18 were 12 seconds long,
and 25 were 15 seconds long. There were therefore 1381 3-second
audio segments containing White-headed Woodpecker
vocalizations. We estimated recall using a BirdNET confidence
score threshold of 0.5 to be 0.469. Using the first three detections
per survey period for each station (n = 870 predictions), we
estimated precision to be 0.35.

White-headed Woodpeckers were detected at 22 stations, resulting
in a naive occupancy of 7.5% of stations occupied. The total
number of sites estimated as occupied after correcting for
imperfect detection was 23 (95% credible intervals: 22, 27). The
proportion of variance in the occupancy probability attributed
to the random effect of hexagon ID was 0.55[95% Cls: 0.29, 0.78].
The estimated detection probability was, on average, 0.71 (0.60,
0.80) per week of monitoring. The cumulative detection
probability reached 0.99 after 4 weeks of monitoring, meaning
we were able to detect White-headed Woodpecker, when present,
without error using our PAM protocol after 4 weeks of
monitoring. Of the habitat covariates considered in the global
model (Table 1), the top-supported occupancy model was found
to include lodgepole pine basal area and the top-supported
detection model was the intercept only model (Table 2, Table 3).
The odds of occupancy were 5.26 times lower for every 2.87 m?%/
ha increase in lodgepole pine basal area (Fig. 2). We estimated
the Bayesian p-value of the global model to be 0.24, indicating
adequate model fit. We provide a summary of the global model
in Table A.2.

We found stations wherein White-headed Woodpecker were
detected to have significantly higher habitat suitability indices
(Fig. 3A, Table 4A). The adjusted intra-class correlation
coefficient of the random effect of hexagon ID was 0.75 [95%
confidence intervals: 0.61, 0.80), indicating most of the variation
in habitat suitability values were among hexagons. Hexagons with
White-headed Woodpecker also had higher suitability indices
(Fig. 3B, Table 4B).

DISCUSSION

We provide the first landscape-scale assessment of White-headed
Woodpecker occupancy in the Umatilla and Wallowa-Whitman
National Forests of the northern Blue Mountains, USA. Our
study found that White-headed Woodpecker occupancy
probability in the northern Blue Mountains region was low, while
the probability of detecting the White-headed Woodpecker with
PAM, given it is present, was relatively high. We also found that
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Table 3. Summary of the top-supported detection and occupancy
models showing the mean, standard deviation (SD), and lower
and upper 95% credible intervals of model coefficients.

Mean SD Lower 95%  Upper 95%
Detection model
Variable
Intercept 0.899 0.256 0.403 1.410
Occupancy model
Variable
Intercept -4.379 0.647 -5.786 -3.247
Lodgepole Pine BA -1.645 0.685 -3.052 -0.391
Random Effect of Hexagon 2.169 0.590 1.187 3.518

Fig. 2. Model selection revealed White-headed Woodpecker
(Leuconotopicus albolarvatus) occurrence declined with
increasing Lodgepole Pine Basal Area. The shaded region
represents the 95% credible intervals, and the inset graph shows
the posterior distribution of the associated slope estimate
relative to zero, as indicated by the dashed line. Model selection
results are displayed in Table 2 and a summary of the top-
supported model is provided in Table 3.
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White-headed Woodpecker occupancy declined with lodgepole
pine basal area. Further, stations and hexagons wherein White-
headed Woodpeckers were detected had significantly higher
habitat suitability indices. Our results suggest areas with relatively
high habitat suitability (e.g., > 0.3 HSI at the station scale and >
0.2 HSI at the hexagon scale), but unknown White-headed
Woodpecker occupancy likely offers more suitable breeding
locations compared to areas below these HSI thresholds. More
broadly, our results provide further evidence that the distribution
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Fig. 3. Relationships between the White-headed Woodpecker
presence and the White-headed Woodpecker (Leuconotopicus
albolarvatus) Habitat Suitability Index by Latif et al. (2015) at
the station (A) and hexagon (B) scale. Stations and hexagons
wherein White-headed Woodpeckers were detected had
significantly higher values of the habitat suitability index.
Points indicate individual stations (A) or hexagons (B). The
associated model summaries can be found in Table 3.
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of late-successional ponderosa pine forests capable of supporting
wildlife dependent on such forests is limited in this region. Because
wildlife is considered a useful indicator of ecosystem function and
integrity (Chase et al. 2020, Matricardi et al. 2020, Betts et al.
2024), this study provides important insight into the health of the
dry forests in the northern Blue Mountains.

Our results indicate a low occupancy probability for White-
headed Woodpeckers in the northern Blue Mountains. Notably,
the random effect of hexagon ID explained a large proportion of
the variance in occupancy (i.e., 0.55), highlighting there are
extensive differences among hexagons in occupancy (i.e., some
hexagons have higher occupancy probability than others). In
other words, overall occupancy is low across the landscape, but
in a few spatially adjacent locations, occupancy probability is
comparatively high. White-headed Woodpeckers therefore
exhibit a sparse, but spatially clumped distribution in the northern
Blue Mountains. The negative relationship between occupancy
and lodgepole pine we observed could be related to contrasts
between the preferred habitats of White-headed Woodpeckers
and forests containing lodgepole pine. Specifically, White-headed
Woodpeckers rely on dry forests composed of mature ponderosa
pine and an open understory that is maintained by low severity
fires (Kozma et al. 2025). Lodgepole pine, on the other hand, is
more often associated with moist mixed conifer forests that tend
to have more closed understories and burn less frequently with
mixed fire severity. In the northern Blue Mountains, dry
ponderosa-dominated forests occur at relatively lower elevations
and the moist mixed conifer forests tend to be found at relatively
higher elevations (Stine et al. 2014). Given the differences between
the types of forest ponderosa pine and lodgepole pine are most
commonly associated with, further study will be needed to
understand the extent to which lodgepole pine directly affects
White-headed Woodpecker occupancy or rather indicates
broader habitat characteristics associated with unsuitable White-
headed Woodpecker habitat. Importantly, the large proportion
of the variance in occupancy explained by the random effect
represents variation in occupancy not attributed to lodgepole pine
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Table 4. Summaries of linear models comparing sites White-
headed Woodpeckers (WHWO; Leuconotopicus albolarvatus)
were and were not detected on the Umatilla and Wallowa-
Whitman National Forests, 2022 and 2023 breeding seasons.
Table 4A summarizes the analysis of habitat suitability indices
between stations. Table 4B summarizes the comparison of habitat
suitability values between hexagons. For both models, the
reference category is undetected. Plots of associated data can be
found in Figure 2. For the model summarized in Table 4A, the
random-intercept variance component for hexagon was 0.007 (SD
=0.084).

Mean  Std. error df  tvalue pvalue
Table 4A
Coefficient
Intercept 0.19 0.01 87.13 19.87 <0.0001
WHWO State - detected ~ 0.03 0.01 302.11  2.02 0.04
Table 4B
Coefficient
Intercept 0.18 0.01 82 18.81  <0.0001
WHWO State - detected ~ 0.09 0.02 82 3.9 0.0002

basal area. Additional, unidentified site-level differences are
therefore contributing to the observed patterns of White-headed
Woodpecker occurrence.

PAM was previously shown to provide a similar cumulative
detection probability estimate following 7 days of monitoring and
after validating all detections produced by a custom classifier
trained on recordings from the same study region (Gaylord et al.
2023). We used a classifier trained on publicly available White-
headed Woodpecker recordings (i.e., BirdNET v2.4; Kahl et al.
2021) and validated only 50 detections per survey period, yet still
obtained a cumulative detection probability > 0.9 after 2 weeks
of monitoring. Both our results and the previous results therefore
suggest PAM is a highly effective means for monitoring White-
headed Woodpeckers. Based on these detection probability
estimates, it seems PAM survey data collected and processed using
our protocol, the same ARUs models, and BirdNET v2.4 can be
used to directly inform forest management decisions without
using statistical models that account for imperfect detection when
> 4 weeks of audio recordings are collected at a site.

Mature ponderosa pine forests of the northern Blue Mountains
are a priority restoration ecosystem because of their ability to
support multiple species of conservation concern and for the
regional decline of the ecosystem (Altman and Bresson 2017).
The relatively low occupancy estimate identified in our current
study may indicate that the amount or health of mature ponderosa
pine forest in the northern Blue Mountains is insufficient or
incapable of sustaining a broad distribution of White-headed
Woodpeckers. This could be especially indicative of a lack of
specific forest resources, such as snags, in areas that contain
otherwise suitable habitat. Indeed, suitable habitat is seemingly
unoccupied because there are areas without detections that have
habitat suitability indices similar to stations with detections. It is
also possible the Habitat Suitability Index does not completely
identify suitable habitat because it was created using topographic
variables, measurements of canopy cover, ponderosa pine
prevalence, and forest edge density (Latif et al. 2015). White-

Fig. 4. Potential juvenile White-headed Woodpecker
(Leuconotopicus albolarvatus) dispersal distances from areas
found to be occupied by White-headed Woodpeckers. Red
diamonds indicate stations occupied by White-headed
Woodpeckers and orange circles indicate unoccupied stations.
Blue to yellow gradient show the Habitat Suitability Index
generated by Latif et al. (2015) on National Forest lands. The
smallest white buffers indicate the minimum distance 90% of
woodpeckers dispersed (i.e., 7 km radius), the middle white
buffers indicate the minimum distance 50% of woodpeckers
dispersed (i.e., 24km radius), and the largest white buffers show
minimum distance 5% of juvenile woodpeckers dispersed (i.e.,
70 km radius), as reported by Lorenz et al. (2024).

headed Woodpeckers rely on snags and open understories for
nesting and also select areas with variable canopy cover (Lorenz
etal. 2015, 2024). Importantly, these forest characteristics are not
represented by the Habitat Suitability Index developed by Latif
etal. (2015). Asadditional occurrence data accumulates, updating
the habitat suitability model can further improve the utility of the
White-headed Woodpecker Habitat Suitability Index in our
region (Duarte et al. 2025).

The absence of White-headed Woodpecker does not necessarily
indicate that it is habitat that is limiting its distribution. Other
factors, such as juvenile dispersal, could limit the distribution of
these birds across the National Forests. Lorenz et al. (2024)
quantified Dbiased-corrected estimates of White-headed
Woodpecker juvenile dispersal and found 90% of woodpeckers
disperse at least 7 km while 5% dispersed 70 km. Figure 4 shows
the minimum dispersal distances of 90%, 50%, and 5% of juvenile
woodpeckers, based on juvenile dispersal distances reported by
Lorenz et al. (2024), centered on the sites classified as occupied.
This figure suggests that White-headed Woodpeckers are not
dispersal limited if individuals are capable of dispersing the
maximum distance previously observed. Within our study area,
however, the dispersal buffers contained many non-forested areas
and the extent to which such habitats limit dispersal is not known.
If non-forested habitats are impervious to juvenile dispersal and
many individuals do not disperse further than the minimum
distance 50% of juveniles were observed to disperse (i.e., 24 km),
then the ability of dispersing juveniles to colonize existing suitable
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habitat may be limited. Further resolving the habitat differences
between occupied and unoccupied stations, particularly those
containing suitable habitat, and understanding patterns of
juvenile dispersal and survival represent promising future
directions for understanding White-headed Woodpecker
distributions in the northern Blue Mountains.

Here, we reveal that the White-headed Woodpecker distribution
across the National Forests of the northern Blue Mountains is
limited and spatially clumped. We found that sites where White-
headed Woodpeckers were detected had significantly higher
habitat suitability. With increased knowledge on the species’
distribution and the validation of a management tool currently
used to identify suitable habitat, land managers can now more
confidently identify areas that currently support this species of
conservation concern during the breeding season and restore and
monitor unoccupied areas that contain suitable habitat, as
indicated by the habitat suitability model. The negative
relationship between lodgepole pine and White-headed
Woodpecker occupancy suggests restorations efforts may benefit
from considering lodgepole pine management in suitable habitat.
Forests, and the dry forests of the Pacific Northwest in particular,
are facing a myriad of threats including increased frequency of
drought, non-native insects and pathogens, and shifting wildfire
regimes (Millar and Stephenson 2015, Johnston et al. 2025). Using
PAM to identify and monitor the distribution of indicator species
across managed landscapes, particularly those that are otherwise
data deficient, represents a promising approach for understanding
and quantifying changes in forest health and prioritizing areas
for habitat restoration.
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Figure A.1. Weeks of monitoring for White-Headed Woodpeckers per station in the Umatilla and
Wallowa-Whitman National Forests. The majority of station were monitored for 4 weeks
(42.9%), followed by 3 weeks (21.8%), 2 weeks (14.6%), 1 week (7.5%), 5 weeks (6.8%), and 6
weeks (6.5%).
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14  Figure A.2. White-headed Woodpecker occurrence and the observed relationships with

15  covariates considered in the global model. Within each graph, the top row of points are those
16  stations considered occupied by White-headed Woodpeckers while the bottom row are

17  unoccupied stations. Histograms show the posterior distribution of the slope estimates relative
18  to zero, indicated by the dotted line. See Supplementary Table 2 for a summary of the

19  associated model. Additional details related to covariates can be found in Table 1 and the

20  Methods section of the main text.
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Table A.1. Environmental covariate values and descriptions. All variables were measured on a 30-m pixel resolution within 200
m radius, circular buffers centered on each station. Basal area was measured in m*2/ha. Covariate data were generated from the
2021 gradient nearest neighbor (GNN) data created by the Landscape Ecology, Modeling, Mapping & Analysis (LEMMA) research
group (Bell et al. 2024) and the LANDFIRE database (LANDFIRE 2016).

Covariate Name Mean SD Min Max Description

Western Larch Basal Area 2.76 2.78 0 25.73 Basal area of Western Larch (Larix occidentalis) within each buffer
Douglas Fir Basal Area 5.53 3.22 0 20.28 Basal area of Douglas Fir (Pseudotsuga menziesii) within each buffer

Ponderosa Pine Basal Area 6.68 5.04 1.74 29.81 Basal area of Ponderosa Pine (Pinus ponderosa) within each buffer
Lodgepole Pine Basal Area 2.39 2.88 0 16.91 Basal area of Lodgepole Pine (Pinus contorta) within each buffer

Vegetation Height 15.91 4.07 1.67 23.14 Average height of all vegetation, measured in meters

Canopy Cover 45.89 14.62 3.72 77.66 Average percent canopy cover of all live trees
Canopy Cover SD 15.40 4.87 3.93 33.08 Average standard deviation in percent canopy cover of all live trees

Average elevation of survey station, measured in meters above sea

Elevation 1416.65 175.26 990.28 1866.09 level



27
28
29
30
31

32

Table A.2. Global model summaries (means, standard deviations (SD), and upper/lower credible

intervals) showing detection and occupancy probability estimates for White-Headed

Woodpeckers on the Umatilla and Wallowa-Whitman National Forests, 2022 and 2023 breeding
seasons. Estimates are presented on a logit scale. Relationships between each covariate and
the occurrence data are displayed in Supplementary Figure 2.

Detection Model

Variable Mean SD 2.50% 97.50%
Intercept 0.195 0.758 -1.222 1.756

Monitoring Hours -0.427 0.228 -0.882 0.007

Day of Year -0.476 0.311 -1.072 0.139

Canopy Cover -0.977 0.482 -1.970 -0.075
Elevation 0.167 0.405 -0.636 0.951

Year - 2023 0.713 0.814 -0.946 2.243

Occupancy Model

Variable Mean SD 2.50% 97.50%
Intercept -4.843 0.750 -6.415 -3.469
Grand Fir BA 0.005 0.653 -1.292 1.293

Larch BA -0.343 0.777 -1.942 1.116

Lodgepole Pine BA -1.142 0.826 -2.900 0.335

Ponderosa Pine BA 0.350 0.507 -0.649 1.352

Douglas Fir BA -0.130 0.485 -1.141 0.793

Canopy Cover SD -0.720 0.477 -1.687 0.181

Average Vegetation Height -0.312 0.557 -1.396 0.775

Random Effect of Hexagon 2.719 0.752 1.460 4.385
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