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No effect of carrying a leg-loop harness mounted radio transmitter on flight
energy expenditure of a small migratory songbird

No hay efecto de llevar un radiotransmisor montado en un arnés de pernera sobre el gasto
energético del vuelo de un pequeño pájaro cantor migratorio
Greg W. Mitchell 1,2,3  , Morag Dick 4,5  , Alexander Macmillan 6 and Christopher G. Guglielmo 6 

ABSTRACT. Radio transmitters and other miniature electronic devices have greatly enhanced our understanding of avian ecology.
However, from both animal welfare and data integrity perspectives, it is crucial to determine if  tracking devices adversely affect birds.
One important knowledge gap is understanding if  carrying tracking devices affects energy costs of flight. We carried out a wind tunnel
experiment with a paired design where Yellow-rumped Warblers (Setophaga coronata) flew for two hours with and without very high
frequency (VHF) radio transmitters mounted with a leg-loop harness (~3% of body mass). We calculated energy expenditure (power; W)
by measuring loss of fat and lean mass during flight with quantitative magnetic resonance. There was no effect of VHF radio transmitters
on energy expenditure, indicating small songbirds can carry appropriately sized and mounted devices without experiencing increased
flight costs. According to aerodynamic theory, smaller birds should have relatively larger power margins compared to larger birds, enabling
them to carry relatively greater payloads. Future studies should examine how VHF radio transmitters and other devices of different
masses, shapes, and mounting techniques affect flight ability and energy costs across bird species varying in body size and wing morphology.

RESUMEN. Los radiotransmisores y otros dispositivos electrónicos miniatura han mejorado mucho nuestra compresión de la ecología
aviar. Sin embargo, desde la perspectiva del bienestar animal y la integridad de los datos es crucial determinar si los dispositivos de rastreo
afectan negativamente a las aves. Un importante faltante de información es entender si llevar dispositivos de rastreo afecta los costos
energéticos del vuelo. Llevamos a cabo un experimento de túnel de viento con un diseño pareado donde Reinitas Coronadas (Setophaga
coronata) volaron durante dos horas con y sin radiotransmisores de frecuencia muy alta (VHF) montados con un arnés de pernera (~3%
de la masa corporal). Calculamos el gasto energético (potencia; W) midiendo la pérdida de grasa y masa magra durante el vuelo con
resonancia magnética cuantitativa. No hubo efecto de los radiotransmisores VHF sobre el gasto energético, lo cual indica que pequeños
pájaros cantores puede llevar dispositivos de tamaño y montaje adecuados sin experimentar un aumento en los costos del vuelo. Según
la teoría aerodinámica, las aves más pequeñas deberían tener márgenes de potencia relativamente mayores en comparación con las aves
más grandes, permitiéndoles transportar relativamente cargas mayores. Estudios futuros deberían examinar cómo los radiotransmisores
VHF y otros dispositivos de diferentes masas, formas y técnicas de montaje afectan la capacidad de vuelo y costos energéticos en especies
de aves que varían en tamaño corporal y morfología de las alas.
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INTRODUCTION
Miniature electronic devices, such as very high frequency (VHF)
radio transmitters, geolocation loggers, and accelerometers, have
revolutionized our understanding of bird behavior, habitat
associations, demography, movement, and space use at scales
spanning from home ranges to cross-hemispheric migrations (e.g.,
Evans et al. 2020, González et al. 2020, Fischer et al. 2022). Together,
these insights not only improve our basic knowledge of avian biology
but also help to inform conservation decisions (e.g., Wilson et al.
2009, Falconer et al. 2016, Howell et al. 2020). Use of VHF telemetry
to track birds has increased through time (Geen et al. 2019). This
pattern is likely to continue given recent development and expansion
of multiple automated VHF tracking arrays (Kays et al. 2011,
Řeřucha et al. 2015, Taylor et al. 2017).  

VHF radio telemetry is a particularly important tool for tracking
small songbirds at local and regional scales. Whereas small songbirds
can generally carry either VHF radio transmitters or geolocators for

tracking migration movements, they are often too small to carry
satellite transmitters (Bridge et al. 2011). Given the importance
of VHF radio telemetry for avian research and conservation at
multiple spatial scales, it is critical to understand if  and how VHF
transmitters affect energetics, physiology, behavior, physical well-
being, and demography of birds, both for animal welfare and so
that potential biases (tag effects) can be accounted for when
interpreting results.  

Studies investigating effects of VHF radio transmitters and
similarly sized geolocators on birds have considered several
endpoints, including effects on reproduction, physiology, within
season and annual apparent survival, foraging and provisioning
behavior, and space use (reviewed by Geen et al. 2019, Brlík et al.
2020, Geldart et al. 2023). To date, no studies have investigated
the impacts of VHF radio transmitters on free-living birds during
the migration stage of the annual cycle (Geldart et al. 2023).
Migration consists of flying and fueling phases (Alerstam 2003,
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McWilliams et al. 2004, Hedenström 2008). Although there has
yet to be a study investigating potential impacts of VHF radio
transmitters during the fueling phase of migration, presumably,
possible effects on fueling birds at stopover sites could be assessed
by using methods that have been used during other resident phases
of the life cycle, e.g., comparing changes in mass or body
composition between tagged and un-tagged individuals (Rae et
al. 2009). However, evaluating potential effects of VHF radio
transmitters during the flight phase of migration is much more
challenging given the need to follow tagged and un-tagged birds
during flight (Geldart et al. 2023).  

The flight phase of migration is energetically demanding and is
equivalent to high-intensity endurance exercise that lasts for many
hours to days (Jenni-Eiermann and Jenni 1991, Jenni-Eiermann
et al. 2002, Guglielmo 2018). Increased flight energy cost owing
to added mass, aerodynamic drag, altered behavior, or
physiological stress resulting from carrying a VHF radio
transmitter or other devices could potentially have negative
downstream effects on migration distance, speed, and survival
(Caccamise and Hedin 1985, Bowlin et al. 2010, Pennycuick et al.
2012). Aerodynamic analysis indicates that in-flight increases in
energy expenditure resulting from carrying tracking devices as a
fixed proportion of body weight should be higher for larger versus
smaller birds and that the extra aerodynamic drag produced by
tracking devices can increase energy expenditure (Caccamise and
Hedin 1985, Bowlin et al. 2010, Pennycuick et al. 2012). Although
scarce in the literature, an excellent means to directly assess tag
effects on the flight phase of migration is to study flight behavior
and energetics under controlled conditions with wind tunnel
experiments. Previous wind tunnel studies have mainly
investigated effects of device shape and mounting position for
birds mounted with data logging units, such as geolocators, which
typically show that high drag shapes (bluff  bodies) mounted high
on the back between the wings have the greatest effect on drag,
energy expenditure, and ultimately distance flown (Obrecht III et
al. 1988, Bowlin et al. 2010, Pennycuick et al. 2012, Mizrahy-
Rewald et al. 2023). To our knowledge, no such empirical studies
have been conducted on birds wearing VHF radio transmitters
that are now commonly used in field research, and which have a
much lower vertical profile but often have a much longer and
flexible antenna than similar sized data logging units, such as
geolocators.  

Our objective was to determine if  birds flying with VHF radio
transmitters mounted using a leg-loop harness experience greater
energy expenditure relative to birds without radio transmitters.
To do this, we used a paired design, flying migratory Yellow-
rumped Warblers (Setophaga coronata, ~12 g) with and without
VHF radio transmitters in a wind tunnel. To be conservative, we
made a directional hypothesis that flight energy expenditure
would be greater when birds flew with a VHF radio transmitter.

METHODS
Sixty Yellow-rumped Warblers were captured as part of another
study during October 2013 at Long Point Bird Observatory, Long
Point, Ontario, Canada (42°34ʹ57.71ʺ N, 80°23ʹ51.48ʺ W; Dick
and Guglielmo 2019). Birds were banded with standard U.S. Fish
and Wildlife Service/Canadian Wildlife Service aluminum leg
bands and transported to the Advanced Facility for Avian
Research (AFAR) at the University of Western Ontario, London,
Ontario, Canada. Birds were then housed in randomly assigned

pairs of the same sex in cages (1.2 x 0.7 x 1.8 m) within a single
large indoor aviary (3.7 x 4.8 x 3.1 m). Birds were paired together
based on sex because previous experience suggested that females
lose more mass when housed with males relative to other females,
likely owing to competitive exclusion with respect to food and/or
water (MD, personal observation). Moreover, we also observed
that birds would more readily eat when housed with another bird
of the same sex as opposed to being housed alone (MD, personal
observation). Room temperature was maintained at 21 °C and
birds were exposed to a 12 h light/dark cycle to match the civil
twilight day length at the time of capture, i.e., the light cycle
experienced during fall migration. A semisynthetic diet (Dick and
Guglielmo 2019), mealworms, and water were provided ad
libitum. From these 60 birds, we selected eight birds for our study
that flew in the center of the wind tunnel (described below) for
20 min in duration without interruption during test flights, i.e.,
they did not fly to the back or front of the wind tunnel and perch.

Experimental flights took place between 22 November and 9
December 2013. Food was removed one h prior to each flight,
which began 30 min after lights out. Each bird was flown
individually twice for 2 h in a wind tunnel specifically designed
for birds at the AFAR (wind speed = 8 m s−1, temperature = 15 °
C, humidity 9 g m−3 = 70% RH). Paired flights were either two
days apart (n = 6 birds), three days apart (n = 1), or 6 days apart
(n = 1). Differences in number of days between flights reflect
scheduling constraints with respect to other wind-tunnel
experiments occurring concurrently. Prior to the experiment, each
bird was randomly assigned to complete their first flight with or
without a VHF radio transmitter (Lotek nanotag NTQB2-1, L x
W x H = 11 x 5 x 3 mm, antenna length = 15 cm, mass = 0.26 g;
Lotek Wireless, Newmarket, Ontario, Canada), where birds flying
with a VHF radio transmitter (n = 4) for their first flight,
completed their second flight without a transmitter and vice versa.
VHF radio transmitters were placed on birds using a figure-eight
leg-loop harness (Rappole and Tipton 1991) composed of nylon
elastic thread that was affixed to the VHF radio transmitter with
a small amount of cyanoacrylate adhesive (Crazy Glue Gel,
Toagosei America Inc., Columbus, Ohio, USA). The glue and
harness added an additional 0.08 g to the VHF radio transmitter.
When VHF radio transmitters were applied, we preened each
bird’s feathers on the lower back to cover the transmitters, helping
minimize potential aerodynamic drag caused by the already small
vertical profile of the VHF radio transmitters. VHF radio
transmitters were placed on birds 24 h prior to their flight to
provide time to adjust to the harness.  

Immediately prior to and following each flight, birds were
weighed (accuracy = 0.001 g) and wet lean mass and fat mass were
measured non-invasively by using quantitative magnetic
resonance (QMR; model Echo-MRI-B, Echo-Medical Systems,
Houston, Texas, USA; refer to Guglielmo et al. [2011] for further
details). For QMR, birds were scanned three times. Each scan was
2 min in duration and resulting measurements were averaged.
Average coefficients of variation (± SD) for repeated scans for fat
and lean mass prior to flying were 0.06 (± 0.03) and 0.009
(± 0.003), respectively. Average coefficients of variation for
repeated scans for fat and lean mass following flight were 0.07
(± 0.04) and 0.006 (± 0.004), respectively. VHF radio transmitters
were removed prior to mass measurements or scanning in the
QMR and then reapplied. We converted reductions in lean and
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fat mass to energy expenditure, assuming 39.6 and 5.3 kJ of energy
were produced per gram of fat and wet lean mass lost, respectively
(Gerson and Guglielmo 2011). We then added these values and
converted the sum to power, i.e., the rate of energy expenditure
measured in Watts (W; where 1 W = 1 J s−1) by multiplying by
1000 and dividing by the flight duration of 7200 seconds. Research
was carried out under permit from the Canadian Wildlife Service
(CA-0256) and an animal care protocol approved by the
University of Western Ontario Animal Care Committee (protocol
#2010-216).  

All statistical analyses were done in R 4.1.0 (R Core Team 2021).
We analyzed energy expenditure as a function of carrying a VHF
radio transmitter or not and initial (wet) mass prior to each flight.
We included initial mass to account for differences in cost of
transport for heavier versus lighter birds (Caccamise and Hedin
1985). We also included a random effect for individual to control
for potential autocorrelation of flight behavior within individuals.
Generalized linear mixed models were fit with the glmmtmb
package (Magnusson et al. 2017). Model fit was evaluated visually
by examining quantile-quantile plots of residuals, residuals versus
fitted values, and residuals as a function of each predictor. Data
were visualized by using gglot2 (Wickham et al. 2016). Summary
statistics represent means ± SDs. For our mixed-effects model we
assessed significance at α = 0.05 and all tests were one-sided, where
we predicted carrying a VHF radio transmitter would result in
increased energy expenditure and heavier birds would have higher
energy expenditure.

RESULTS
Average body mass of birds with and without VHF radio
transmitters on the first flight was 11.52 ± 0.56 g and 12.73 ± 0.54
g, respectively. Average body mass of birds with and without VHF
radio transmitters on the second flight was 12.34 ± 0.53 g and
12.53 ± 0.53 g, respectively. Thus, the VHF radio transmitters and
harness represented ~3.0% of a bird’s body mass for birds flown
with a VHF radio transmitter on their first flight and ~2.8% of a
bird’s body mass for birds flown with a VHF radio transmitter
on their second flight.  

Lean mass loss during first flights for birds with and without VHF
radio transmitters was 0.29 ± 0.31 g and 0.22 ± 0.10 g, respectively.
Fat mass loss during first flights for birds with and without VHF
radio transmitters was 0.28 ± 0.06 g and 0.29 ± 0.02 g, respectively.
Lean mass loss during second flights for birds with and without
VHF radio transmitters was 0.25 ± 0.07 g and 0.31 ± 0.07 g,
respectively. Fat mass loss during second flights for birds with and
without VHF radio transmitters was 0.29 ± 0.02 g and 0.27 ± 0.05
g, respectively.  

Average energy expenditure for birds that flew with and without
VHF radio transmitters was 1.77 ± 0.24 W and 1.70 ± 0.24 W,
respectively. We did not find any evidence for an effect of carrying
a VHF radio transmitter on energy expenditure (β = 0.07, SE =
0.09, z = 0.8, p = 0.20; Fig. 1). We also did not find an effect of
body mass on energy expenditure (β = −0.01, SE = 0.11, z = −0.1,
p = 0.47). Variance associated with intercepts and residual
variance for the random effect for individual were 0.4 and 0.3,
respectively. The intercept for the main effects was β = 1.77 (SE
= 1.28, z = 1.4).

 Fig. 1. Energy expenditure (power; W) of Yellow-rumped
Warblers (Setophaga coronata) flown with and without VHF
radio transmitters for two-hour flights in a wind tunnel at the
Advanced Facility for Avian Research, University of Western
Ontario, London, Ontario, Canada. Lines of the same color
and symbols of the same shape connect flights completed by
the same bird. Energy expenditure ranged from 1.4 to 2.0 W for
birds flown without VHF radio transmitters and 1.4 to 2.2 W
for birds flown with VHF radio transmitters. Mean energy
expenditure was 1.77 W (± 0.24) and 1.70 W (± 0.24) for birds
flown with and without VHF radio transmitters, respectively.
 

DICUSSION
Although it is feasible that carrying a VHF radio transmitter
might impact flight energy expenditure through multiple
pathways, e.g., increased mass, aerodynamic drag, physiological
stress, or altered behavior during flight (e.g., Obrecht III et al.
1988, Suedkamp Wells et al. 2003, Woolnough et al. 2004, Irvine
et al. 2007), we did not find an effect of carrying VHF radio
transmitters weighing ~3% of a bird’s body mass mounted with
a leg loop harness on energy expenditure during flight. This is
important, because migration is very energetically demanding
(Jenni-Eiermann and Jenni 1991, Jenni-Eiermann et al. 2002,
Guglielmo 2018), and it is not only important to make sure we
are not impacting our study subjects from an animal welfare
perspective (Geen et al. 2019), but also that migration behavior,
e.g., flight distance or speed, is unbiased (e.g., Irvine et al. 2007).

It is perhaps not surprising that a small bird carrying a VHF radio
transmitter weighing ~3% of its body mass did not experience
negative effects on in-flight energy expenditure given wide
fluctuations in body mass observed in the field for passerines
during the migratory period. For example, it is common for
migratory passerines to have departure fuel loads equivalent to
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20–30% of lean mass, and some species of similar size to Yellow-
rumped Warblers, such as Blackpoll Warblers (Setophaga striata)
and many trans-Saharan migrant passerines, can nearly double
their mass when preparing to make multi-day nonstop flights
(Odum 1960, Nisbet et al. 1963, Bairlein 2002, Holberton et al.
2005). Migratory birds also show flexibility of flight muscle size
that is adjusted to match body mass changes (Lindström et al.
2000). Thus, typical songbirds likely have spare power capacity
and phenotypic flexibility to adjust to extra mass and a certain
amount of aerodynamic drag.  

Whereas small songbirds may have spare power capacity and
phenotypic flexibility to carry small VHF radio transmitters as
observed in this study, we caution against extrapolating these
results to larger species. This is because small birds have greater
power margins relative to large birds, meaning they can carry
proportionally greater loads relative to their lean body mass
(Caccamise and Hedin 1985, Hedenström and Alerstam 1992,
Klaassen 1996). This further suggests that smaller birds may be
able to accommodate heavier tracking devices in terms of percent
body mass relative to larger birds (Caccamise and Hedin 1985).
For example, using aerodynamic theory, Caccamise and Hedin
(1985) estimated a 20 g bird carrying a radio transmitter weighing
5% of its mass would experience a reduction in its power surplus
(difference between available power needed to fly at a birds
maximum range velocity and power available) of ~1.5% compared
with a 200 g bird carrying a transmitter weighing 5% of its body
mass, which would experience a reduction in power surplus of
~5%. Last, we caution against extrapolating our results to other
tracking devices having higher profiles when mounted on a bird
(e.g., geolocators). This is because higher profiles increase the
frontal area of the tracking device, resulting in increased drag and
an associated increase in energy expenditure as well as reductions
in potential flight ranges (Obrecht III et al. 1988, Bowlin et al.
2010, Pennycuick et al. 2012).  

We used changes in lean and fat mass, derived from QMR, to
calculate in-flight energy expenditure (power) based on Gerson
and Guglielmo (2011). The derivation of flight energy
expenditure from changes in lean and fat mass has been used in
numerous other studies and has been validated by using 13C -
labelled sodium bicarbonate and doubly-labelled water (Hedh et
al. 2020, Elowe et al. 2023). Energy expenditure in our study was
very similar to several previous studies for Yellow-rumped
Warblers (Hedh et al. 2020, Elowe et al. 2023, Groom et al. 2023),
highlighting the accuracy of our estimates. Overall, we suggest
that quick and non-invasive QMR scanning combined with wind
tunnel flights provides a powerful experimental system to evaluate
potential energetic costs of carrying tracking devices for birds.  

We acknowledge our experimental flights were relatively short in
duration compared to migratory flights that can last overnight or
even longer. We chose two-hour flights because flights of this
length were sufficient to detect effects of experimental challenges
on energy expenditure in our other studies (Maggini et al. 2017,
Ma et al. 2018, Yap et al. 2018). However, because birds lose lean
and fat mass during flight, tag effects could be both negated and
exacerbated during longer flights. On one hand, reductions in lean
and fat mass during longer flights will reduce total power needed
to stay aloft (Pennycuick 1969, Lindström et al. 2000), possibly

freeing up additional capacity to carry the extra load resulting from
a VHF radio transmitter. Alternatively, if  part of lean mass loss
includes catabolism of flight muscles (Dick and Guglielmo 2019),
then we might expect flight performance to diminish with flight
duration. However, we suggest the latter effect is unlikely to occur
given observations that reductions in flight muscle size during flight
appear adaptive in relation to concurrent losses in other components
of body mass, e.g., fat (Lindström et al. 2000). Despite the latter
observation, we still encourage future assessments of impacts of
tracking devices using wind tunnels to explore potential effects over
longer flight durations. We also encourage using particle image
velocimetry to assess aerodynamic effects of devices in relation to
changes in mechanical power output (Hedh et al. 2020).  

An important caveat to our study is that we had a sample size of
eight transmitter flights and eight control flights (n = 16 flights in
total), potentially limiting statistical power. However, we suggest our
results are unlikely to change with larger sample sizes for two main
reasons. First, average energy expenditure and variability in
individual energy expenditure for Yellow-rumped Warblers with
VHF radio transmitters in our study are very similar to those values
measured from Yellow-rumped Warblers without VHF radio
transmitters in other studies (Gerson et al. 2020, Hedh et al. 2020,
Elowe et al. 2023), indicating minimal effects of carrying VHF radio
transmitters. Second, the lower 95% CI bound for our one-sided test
is −0.07 W, which is well below zero and unlikely to change
substantially with increased sample sizes. With a growing body of
literature measuring energy expenditure in flight, we recommend
future studies carry out a priori power analyses to estimate optimal
sample sizes and estimate expected increases in energy expenditure
using aerodynamic theory (e.g., Caccamise and Hedin 1985, Kelling
et al. 2024).  

In conclusion, use of VHF radio transmitters and other tracking
devices to study birds has increased through time (Geen et al. 2019),
and it can be reasonably assumed their use will continue to increase
given the expansion of automated tracking arrays (e.g., Kays et al.
2011, Řeřucha et al. 2015, Taylor et al. 2017) and continued
improvements in tracking technology. We agree with Geldart et al.
(2023) that wind tunnel studies provide a unique opportunity to
explore potential in-flight tagging effects, an area of research that
represents a significant knowledge gap. It is likely one size does not
fit all in terms of a general rule for tracking devices as a percentage
of body mass (i.e., isometric scaling) with respect to animal welfare
and data quality. Based on aerodynamic considerations, effects are
more likely to scale allometrically (Caccamise and Hedin 1985). In
addition, other factors such as wing shape could also be important
(Norberg 1995). Lastly, migratory birds are vulnerable to predation,
where large fuel loads may impair their ability to take flight and
evade predators (Alerstam and Lindström 1990). Thus, tracking
devices could potentially affect predator avoidance at takeoff and
maneuverability in the air. Further, it is reasonable to assume that
at some percentage of body weight extrinsic devices will negatively
affect birds. What is unclear is where the boundary between no effect
and detriment lies, and how it may change with bird size, wing shapes,
and different fat loads. Is a safe limit 3%, 5%, or even 8% depending
on the size of the bird, and how does device size, shape, and mounting
position affect energy expenditure? We suggest that systematic wind
tunnel and take-off  performance studies using a variety of bird
species varying in body size and wing shape are urgently needed to
resolve conditions under which devices are safe.
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