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Complex changes in climatic suitability for Cassin’s Sparrow (Peucaea
cassinii) revealed by retrospective ecological niche modeling

Cambios complejos en la idoneidad climática para el Gorrión de Cassin (Peucaea
cassinii) revelados por modelado retrospectivo de nicho ecológico
John L. Schnase 1,2  , Mark L. Carroll 1, Paul M. Montesano 1,2   and Virginia A. Seamster 3

ABSTRACT. Conservation status assessments for Cassin’s Sparrow (Peucaea cassinii) show considerable variability across the species’ North
American range. In this study, we combine data from NASA’s Modern-Era Reanalysis for Research and Applications, Version 2 (MERRA-2;
M2) with field observations spanning the past 40 years to investigate Cassin’s Sparrow’s response to multi-decadal changes in climatic suitability
that could help explain this variability. We examine two time- and variable-specific time series using MaxEnt. The M2 time series uses a mix
of microclimatic and ecosystem functional attributes; the MERRAclim-2 (MC) time series uses MERRA-2-derived bioclimatic variables. Trend
analysis reveals complex patterns of slowly increasing climatic suitability over 69.5% of the study area in the MC time series accompanied by
decreases over 24.4% of the area. Shifts in the study area–wide weighted centroid for suitability show a northwesterly, 40-year displacement of
1.85 km/yr. The M2 time series indicates a less favorable history with increasing and decreasing trends over 54.9% and 40.1% of the study area,
respectively, and a westerly centroid shift of 2.60 km/yr. Increasing winds, drying land surface conditions, and variability in North American
monsoon rainfall appear to be dominating, climate-related influences on the species. These variables also demonstrate complex patterns of
non-constant spatial and temporal trends across the study area. We conclude that modeled estimates of climatic suitability for Cassin’s Sparrow
can vary widely depending on the temporal frame, spatial extent, and environmental drivers considered; that the species’ response to non-
constant trends in key environmental drivers is a potential source of this variability; that this variability mirrors the inconsistencies seen in the
literature regarding the species’ conservation status; and that retrospective ecological niche modeling that combines time and variable specificity,
as we have done here, can be a useful adjunct to assessments of a species’ conservation status.

RESUMEN. Las evaluaciones del estado de conservación del Gorrión de Cassin (Peucaea cassinii) muestran una variabilidad considerable en
toda la distribución de la especie en América del Nore. En este estudio, combinamos datos del Reanálisis Retrospectivo de la Era Moderna
para Investigación y Aplicaciones, Versión 2 (MERRA-2; M2 por sus siglas en inglés) de la NASA con observaciones de campo que abarcan
los últimos 40 años, para investigar la respuesta del Gorrión de Cassin a los cambios de varias décadas en la idoneidad climática que podrían
ayudar a explicar esta variabilidad. Examinamos dos series temporales de variables específicas utilizando MaxEnt. La serie temporal M2 utiliza
una combinación de atributos funcionales micro climáticos y ecosistémicos; la serie temporal MERRAclim-2 (MC) utiliza variables
bioclimáticas derivadas de MERRA-2. El análisis de tendencias revela patrones complejos de idoneidad climática que aumentan lentamente
en más del 69.5% del área de estudio en la serie temporal MC, acompañado de disminuciones en más del 24.4% del área. Los desplazamientos
en el centroide ponderado del área de estudio para determinar la idoneidad muestran un desplazamiento de 1.85 km/año hacia el noroeste
durante 40 años. La serie temporal M2 indica una historia menos favorable con tendencias crecientes y decrecientes en 54.9% y 40.1% del área
de estudio, respectivamente, y un desplazamiento del centroide hacia el oeste de 2.60 km/año. El aumento de los vientos, la sequía de la superficie
terrestre y la variabilidad en las precipitaciones monzónicas de América del Norte parecen ser influencias dominantes relacionadas con el clima
sobre la especie. Estas variables también demuestran patrones complejos de tendencias espaciales y temporales no constantes en toda el área
de estudio. Concluimos que las estimaciones modeladas de idoneidad climática para el Gorrión de Cassin pueden variar ampliamente
dependiendo del marco temporal, la extensión espacial y los factores ambientales considerados; que la respuesta de la especie a tendencias no
constantes en los factores ambientales clave es una fuente potencial de esta variabilidad; que esta variabilidad refleja las inconsistencias
observadas en la literatura respecto al estado de conservación de la especie; y que el modelado de nicho ecológico retrospectivo que combina
el tiempo y la especificidad variable, como hemos hecho aquí, puede ser un útil complemento para las evaluaciones del estado de conservación
de una especie.

Key Words: conservation status assessments; MERRA-2; MERRAclim-2; non-stationarity; Theil-Sen trend analysis; time-specific ENM; variable-
specific ENM

INTRODUCTION

Cassin’s Sparrow’s environmental preferences
Cassin’s Sparrow (Peucaea cassinii, Woodhouse 1852) is a small,
gray, ground-dwelling endemic of the arid grasslands of the
southwestern United States (U.S.) and northern Mexico
(Woodhouse 1852, Williams and LeSassier 1968, Dunning et al.
2020). It is migratory, constructs nests near the ground, and is
notable for its secretive nature and highly developed flight song.
Studies have shown that Cassin’s Sparrow’s behavioral ecology is

closely linked to wide-spread, seasonal weather patterns as well
as highly localized, ground-level climatic conditions (Williams
and LeSassier 1968, Schnase et al. 1991, Ruth 2000, Dunning et
al. 2020). Regional precipitation appears to be of particular
importance at the macroclimatic scale, presumably due to its
influence on vegetation availability and insect abundance. In fact,
field studies over the past century suggest that Cassin’s Sparrow
is an itinerant breeder, so responsive to regional rainfall patterns
that birds make seasonal, inter-clutch moves within their range
to find optimal conditions for breeding (Williams and LeSassier
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1968, Ohmart 1969, Dunning et al. 2020). At the microclimatic
scale, wind speed and ambient temperature are important
influences. In a behavior that is uncommon among North
American birds, male Cassin’s Sparrows defend territories and
secure mates using aerial flight song displays. Elevated winds and
temperatures reduce the birds’ capacity to perform this
energetically demanding skylarking behavior, which is an essential
element of the species’ breeding biology (Schnase and Maxwell
1989, Schnase et al. 1991).  

Although much of what is reported about the natural history of
Cassin’s Sparrow is poorly established, Cassin’s Sparrow’s
apparent responsiveness to environmental conditions raises a
concern that the species could be among the many North
American grassland birds that are vulnerable to climate change
(Schnase et al. 1991, Ruth 2000, Wilsey et al. 2019, Dunning et
al. 2020). Accurate range-wide assessments, however, are often
difficult with these species (Hubbard 1974, Huntley et al. 2010,
Reside et al. 2010, Heenan and Seymour 2012, Sohl 2014,
Lipschutz 2016, Norman and Christidis 2016, Iknayan and
Beissinger 2018, Rosenberg et al. 2019). With Cassin’s Sparrow,
for example, numerous studies over the past half-century have
painted an inconsistent picture. Some studies find evidence for a
retraction of viable habitat and declining populations across
North America (Lynn 2006; North American Breeding Bird
Survey, https://www.pwrc.usgs.gov/bbs/), whereas others find
mixed results and too little data to establish with confidence an
overall status (Ruth 2000). Many sources identify the species as
stable and of low conservation concern (Rosenberg et al. 2016,
Dunning et al. 2020; National Audubon Society, https://www.
audubon.org; NatureServe, https://explorer.natureserve.org).
State-level studies are often no more definitive. The State Wildlife
Action Plan for New Mexico, for example, lists Cassin’s Sparrow
as a declining species, susceptible to shifting environmental
conditions that could lead to rapid population changes (New
Mexico Department of Game and Fish 2016). At the same time,
of nine grassland birds in New Mexico, recent work has shown
Cassin’s Sparrow to be the only species for which gains in suitable
habitat are projected over the next 50 years (Salas et al. 2017).  

These differing views of Cassin’s Sparrow’s status suggest that a
fundamental aspect of the species’ relationship to the
environment is not well understood. From first principles, we
know that the multidimensional niche space of a species may shift,
through adaptation or acclimation, as may its demography in
response to climate changes (Maguire 1973). We also know that
climate change can drive shifts in the spatial distribution of many
bird species as they track suitable conditions (Pecl et al. 2017). In
addition, recent work underscores the importance of non-
constant processes, such as long-term trends, seasonal or
temporal cycles, or random variation, which can cause climatic
drivers to vary in complex ways over time and space, a
phenomenon referred to as non-stationarity (Rollinson et al.
2021, Ward et al. 2022). It is generally agreed that the most
important contemporary driver of non-stationary environmental
trends is global climate change (Ward et al. 2022).

Past response to a changing climate can offer insights
Cassin’s Sparrow’s past response to a changing climate could help
explain the variability we see in the species’ status assessments as
well as the underlying biological mechanisms for this response.
This is especially true if  macro- and microclimatic patterns vary

across Cassin’s Sparrow’s range and the variability among these
assessments arises from the species’ response to non-constant
trends in key environmental drivers. Ecological niche modeling
(ENM) is a set of techniques and tools that is often used in this
type of research. ENM uses species occurrence records and
environmental data to estimate the probabilities of suitable
habitats across a study area (Peterson et al. 2011). Although ENM
is commonly used to project future responses of a species to
climatic change, less consideration has been given to historical
responses to a changing climate that could shed light on core
biological questions or the present and future status of a species
(Johnston et al. 2020). In this study, we combine data from NASA’s
Modern-Era Reanalysis for Research and Applications, Version
2 (MERRA-2; M2) with field observations spanning the past 40
years to perform a retrospective ENM analysis of Cassin’s
Sparrow’s evolving climatic niche to help answer three questions
that bear on this issue:  

1. How has Cassin’s Sparrow responded to changing climatic
conditions in the past? 

2. What are the specific attributes of climatic change that the
species is responding to? 

3. Could Cassin’s Sparrow’s response to changing climatic
conditions account for the variability seen in assessments of
the species’ conservation status? 

  

To address the first question, we use changing historical patterns
of climatic suitability as an indirect indicator of the species’
response to changing conditions. For the second question, we use
changes in the types of predictors of climatic suitability over time
to identify the key attributes driving Cassin’s Sparrow’s biological
response. To gain a perspective on the third question, we look at
changing patterns in the values of key predictors over time to
gauge their potential as a source of variability.

Retrospective ENM’s three-element approach
To address these questions, we have taken an approach that
embodies a novel integration of three elements. First, we base our
analysis on environmental variables obtained solely from the M2
reanalysis. Climate reanalyses combine past observations with
numerical models to generate a consistent time series of hundreds
of fundamental, physical drivers of the Earth system. They offer
a comprehensive description of Earth’s observed climate as it has
evolved over the past half  century at a fine temporal scale
(Edwards 2010). The current study spans the 40-year period from
1980 to 2019 and is based on two climatic variable time series. In
one time series, we use 30 M2 variables selected to reflect key
attributes of the microclimate that are known to relate directly or
indirectly to the biological or ecological functioning of a species.
This collection of predictors is intended to help us understand
the influence of climate-related conditions in localized areas near
the Earth’s surface and includes variables, such as temperature
near and on the ground, humidity, wind speed, cloud cover, soil
moisture, evapotranspiration, vegetation coverage, and the
incoming and reflected solar radiation that provides energy to
drive ecosystem functioning at the micro scale (Schnase et al. 1991,
Cabello et al. 2012, Bosilovich et al. 2016, Gelaro et al. 2017,
Arenas-Castro et al. 2018, Pettorelli et al. 2018, Regos et al. 2022a,
2022b). In the second time series, we use 19 M2-derived
bioclimatic variables modeled after the classic bioclim predictors
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commonly used in ENM (O’Donnell and Ignizio 2012). This
collection of predictors is intended to help us understand the
influence of wide-spread, yearly, seasonal, and monthly
temperature and precipitation patterns. Together, these two sets
of predictors provide a more detailed view of macro- and
microclimatic factors influencing environmental suitability for
Cassin’s Sparrow than could be realized by using either set of
predictors alone.  

Second, we employ time-specific ENM in our analysis: our
dependent and independent variables are temporally aligned
across the time span of the study. Detailed information about the
geographic distribution and changing dynamics of climatic
suitability for a species is critical to conservation planning (Guisan
et al. 2013, Porzig et al. 2014, Gonçalves et al. 2016, Rollinson et
al. 2021). ENM is often applied within a time-averaged framework
in which the values of environmental variables are averaged over
time spans that are not in temporal registration with the
occurrence records upon which models are calibrated or tested
(Bede‐Fazekas and Somodi 2020, Ingenloff  and Peterson 2021).
Although useful for exploring species distributions at a broad
level, modeling within a time-averaged framework can elide
complex effects of the environment on an organism, especially
highly mobile or behaviorally complex species (Roubicek et al.
2010, Ingenloff  2020). Of particular concern to conservation
work, studies have shown that temporal mismatches in the time
period spanned by occurrence data and the climate baseline can
decrease the utility and accuracy of ENM products (Roubicek et
al. 2010, Goberville et al. 2015, Guida et al. 2019, Pérez‐Navarro
et al. 2021). In this work, we use five-year averaged values for our
environmental variables across a sequence of eight time intervals
spanning the 40-year period of the study. We then use time-specific
species observations corresponding to these five-year intervals as
dependent variables in the models that form the basis of our
analyses, thereby enabling a temporally explicit view into the
major, range-wide, historical patterns of changing climatic
suitability for Cassin’s Sparrow.  

Finally, we employ variable-specific ENM in our analysis: a
tailored set of independent variables is used for each of the five-
year intervals in the time series. ENM generally uses a fixed set
of variables in a given study. These variables are typically selected
through a manual process based on an ecological understanding
of the species being studied or one of a variety of statistical
approaches (Petitpierre et al. 2017). However, retrospective ENM
using reanalysis data presents an opportunity to examine changes
in the drivers of climatic suitability themselves over time. In this
study, we use NASA’s MERRA/Max system to perform
automatic variable screening within each of the five-year time
intervals of the analysis. MERRA/Max provides a scalable
feature selection approach that enables direct use of global climate
model (GCM) outputs in ENM (Schnase and Carroll 2022). The
system accomplishes this selection through a Monte Carlo
optimization that screens a collection of variables for potential
predictors of suitable conditions (Schnase et al. 2021). With
MERRA/Max, variable selection is guided by the indirect
biological influences injected into the algorithm’s selection
process by the species occurrence files, identifying biologically
and ecologically plausible predictors in large, multidimensional
data sets where selection through ecological reasoning or other
means is not feasible (Searcy and Shaffer 2016, Smith and Santos

2020). Variable selection for each five-year time interval, as
applied here, enables a view into the changing patterns of
environmental determinants of climatic suitability that would
otherwise be difficult, if  not impossible, to obtain. That view, in
turn, provides a way of examining the possible underlying
biological basis for Cassin’s Sparrow’s response to a changing
climate.  

Collectively, these three aspects of the study offer a more detailed
look at Cassin’s Sparrow’s relationship to the environment than
has been previously reported. In the sections that follow, we
describe our method and results, discuss what we see as the
important takeaway lessons from the study, and conclude with
recommendations for next steps.

METHODS

Modeling environment and study approach
We framed the study as an analysis of broad-scale, multi-decadal
changes in the climatic suitability for Cassin’s Sparrow. To that
end, we did not focus on changes in the species’ range, population
size, or abundance, and, in the current work, we do not look at
higher temporal resolution or inter-annual trends in climatic
suitability, which would have added significantly to the
computational burden of the analysis. We used MaxEnt for our
modeling environment (Phillips et al. 2006, Elith et al. 2011,
Phillips et al. 2017). Based on a machine learning approach to
maximum entropy modeling, MaxEnt calculates the distribution
of suitable habitats using species occurrence data and a set of
environmental variables (Phillips et al. 2006, 2017, Elith et al.
2011, Merow et al. 2013, Kalinski 2019). The system uses presence
data only, comparing the locations of where a species has been
found to environmental data from across the study region.
MaxEnt defines the overall environment by sampling a large
number of background points throughout the region, including
locations where the species is known to occur as well as locations
where the species’ presence or absence is unknown. Background
points are intended to be so numerous that they capture the full
environmental space of the study area and, importantly, so
outnumber the occurrence locations that favorable conditions for
a species can be mathematical distinguished from the overall
environmental context. MaxEnt produces accurate predictions
with even small sample sizes and often produces better results
when the number of presence locations is reduced by statistical
thinning or filtered in an ecologically meaningful way (Pearson
et al. 2007, Boria et al. 2014, Aiello-Lammens et al. 2015, Phillips
et al. 2017).

Preparing species occurrence data
We used annual, time-stamped, point locations for Cassin’s
Sparrow occurrences across the species’ full North American
range, making no distinction between breeding and non-breeding
season observations. We obtained occurrence data from the
Global Biodiversity Information Facility (GBIF, https://www.
gbif.org), an international information infrastructure funded by
the world’s governments that provides open access to data about
all types of life on Earth. Occurrence datasets make up the core
of what is published by GBIF. GBIF’s standardized formatting,
documentation, and quality requirements are enforced through
close collaboration with data providers. We downloaded a total
of 32,518 records for the years 1980 to 2019 (GBIF occurrence
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 Fig. 1. Workflow showing the major processing steps used in the study: (A) data preparation, (B) time series construction, and (C)
time series analysis. Data sources include the Global Biodiversity Information Facility (GBIF) and the Goddard Earth Sciences
Data and Information Services Center (GES DISC).
 

download, https://doi.org/10.15468/dl.x33grq [15 January 2022]).
More than 95% of the records were originally sourced from the
eBird citizen-scientist observational dataset (https://ebird.org/
species/casspa), but the download also included research-grade
records from iNaturalist (https://www.inaturalist.org), the
National Ecological Observational Network’s breeding land bird
point count collection (https://www.neonscience.org), and
museum specimen records from the National Museum of Natural
History (https://naturalhistory.si.edu), American Museum of
Natural History (https://www.amnh.org), Harvard University’s
Museum of Comparative Zoology (https://mcz.harvard.edu),
Kansas University Biodiversity Institute and Natural History
Museum (https://biodiversity.ku.edu), and the University of
Arizona Museum of Natural History (https://www.
arizonamuseumofnaturalhistory.org).  

There were relatively few occurrence records in the early years of
the study’s time span. We found that binning records into five-
year intervals gave us enough observations to produce useful
models across the long time period of the study. We therefore
merged the GBIF observations into a time-series comprising
eight, five-year aggregated collections: 1980–1984, 1985–1989,
1990–1994, 1995–1999, 2000–2004, 2005–2009, 2010–2014, and
2015–2019 (Fig. 1A). These five-year collections initially ranged
in size from 263 records in the 1980 group to over 14,000 records
in the 2015 collection. After removing replicates, we thinned the
records to non-overlapping observations within a 16 km (~10
mile) buffer around each point to avoid double counting the same

individuals. For count uniformity across the series and to reduce
record-densities that can diminish model performance, we
extracted random 250-record samples for each five-year span in
the time series (Boria et al. 2014). In trials using various sample
sizes, we found that 250 records per five-year interval yielded the
most consistently accurate models across the 40-year time series.

Preparing environmental variables
We created two sets of environmental variables for the analysis.
We began by defining a study area that encompasses Cassin’s
Sparrow’s summer and winter ranges across the Continental U.
S. using information from the U.S. Geological Survey (USGS)
National Gap Analysis Program (GAP) (https://doi.org/10.5066/
F7Q81B3R). We selected a study area that extended from latitude
24.8° N to 44.0° N and longitude 93.5° W to 115.6° W. We then
obtained a base collection of maximum, minimum, and mean
values of 30 gridded M2 variables across our spatial and temporal
domain, natively available from NASA’s Goddard Earth Sciences
Data and Information Services Center (https://disc.gsfc.nasa.gov;
Table 1, Fig. 1A). This collection contained the precursor
temperature and precipitation variables from which the 19 classic,
bioclim predictors used in ENM are derived (O’Donnell and
Ignizio 2012). In addition, it included environmental attributes
of more direct biological significance that are not explicitly
represented in the 19 traditional bioclimatic variables, such as soil
moisture and evaporation from land, wind direction and speed,
and various solar radiation fluxes. We aggregated these data to
our five-year time intervals to create working set collections of
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 Table 1. MERRA-2 (M2) variables.
 
Variable Description1

TS Surface skin temperature (K)
QV2M 2-meter specific humidity (kg/kg)
T2M 2-meter air temperature (K)
EFLUX Positive latent heat flux (W/m2)
HFLUX Positive sensible heat flux (W/m2)
SPEED Surface wind speed (m/s)
PREVTOT Total re-evaporation/sublimation of precipitation ((kg/

m2)/s)
PRECTOTCORR Total observation-corrected surface precipitation ((kg/

m2)/s)
ALBEDO Surface albedo
LWGNT Surface net downward longwave flux (W/m2)
SWGNT Surface net downward shortwave flux (W/m2)
TAUTOT Optical thickness of all clouds
CLDTOT Total cloud area fraction
LAI Leaf area index
GRN Vegetation greenness fraction (LAI-weighted)
GWETPROF Average profile soil wetness
GWETROOT Root zone soil wetness
TSURF Mean land surface temperature (K)
TSAT Surface temperature of saturated zone (K)
FRWLT Fractional wilting area
QINFIL Soil water infiltration rate ((km/m2)/s))
GHLAND Downward heat flux into topsoil layer (W/m2)
WCHANGE Total land water change per unit time ((kg/m2)/s)
ECHANGE Total land energy change per unit time (W/m2)
PRMC Total profile soil moisture content (m3/m3)
RZMC Root zone soil moisture content (m3/m3)
EVPSOIL Bare soil evaporation energy flux (W/m2)
EVPTRNS Transpiration energy flux (W/m2)
EVPINTR Interception loss energy flux (W/m2)
EVLAND Evaporation from land ((kg/m2)/s)
1 See Appendix A for a more detailed description of the M2 variables.

the five-year averaged mean values for each variable, which we
then formatted for use by MaxEnt. To smooth the representation
of local environmental conditions, we resampled the M2 layers
from their native spatial resolution of 1/2° latitude × 5/8°
longitude to 5.0 arc-min (1/12°) resolution (~7.6 km at latitude
35.0° N) using bilinear interpolation. We also built working set
collections of M2-derived bioclimatic variables, one set per five-
year interval, which we refer to as the MERRAclim-2 (MC)
working set collection (Table 2). These were modeled after
Worldclim’s 19 bioclim variables; however, because the classic
Worldclim collection is based on 30-year averaged values, we
created an M2-based version to accommodate the time-specificity
requirement of the study. For this, we used the R dismo library
following the method of Vega et al. (Vega et al. 2017, Hijmans et
al. 2023). We employed M2’s monthly maximum and minimum
temperature values (T2M) and the averaged values for monthly
precipitation (PRECTOTCORR) to create the MC working set
collections, which conveyed the added consistency of MC’s 19
variables being derived from the same data sources as M2.

Building the time series
We built two MaxEnt climatic suitability time series using the
aggregated GBIF occurrence collections. In one, we used the M2
working sets as independent variables; in the other, we used the
MC working sets as independent variables. A two-step processing
workflow was applied to each five-year interval of each time series
(Fig. 1B).

 Table 2. MERRAclim-2 (MC) variables.
 
Variable Description

MC_Bio01 Annual mean temperature (°C)
MC_Bio02 Mean diurnal temperature range (°C)
MC_Bio03 Isothermality [(MC_Bio02/MC_Bio07)*100] (%)
MC_Bio04 Temperature seasonality [(Standard deviation*100)] (°

C)
MC_Bio05 Maximum temperature of the warmest month (°C)
MC_Bio06 Minimum temperature of the coldest month (°C)
MC_Bio07 Temperature annual range (MC_Bio05-MC_Bio06) (°

C)
MC_Bio08 Mean temperature of the wettest quarter (°C)
MC_Bio09 Mean temperature of the driest quarter (°C)
MC_Bio10 Mean temperature of the warmest quarter (°C)
MC_Bio11 Mean temperature of the coldest quarter (°C)
MC_Bio12 Annual precipitation (mm)
MC_Bio13 Precipitation of the wettest month (mm)
MC_Bio14 Precipitation of the driest month (mm)
MC_Bio15 Precipitation seasonality (Coefficient of variation) (%)
MC_Bio16 Precipitation of the wettest quarter (mm)
MC_Bio17 Precipitation of the driest quarter (mm)
MC_Bio18 Precipitation of the warmest quarter (mm)
MC_Bio19 Precipitation of the coldest quarter (mm)

Selecting and refining time-specific variables
First, we used MERRA/Max to automatically select top
contributing M2 and MC variables in each of the eight, five-year
spans of the 40-year series. We performed three screening runs,
each returning a set of top ten selected variables using MERRA/
Max’s standard screening configuration and a per-variable
sampling rate of 100 (Schnase and Carroll 2022). We averaged
the results of the three runs to create a selection set of the top ten
predictors for each five-year interval. We then used variance
inflation factor (VIF) analysis to reduce collinearities in the
selected predictors (Pradhan 2016). This resulted in a final, model
set of top predictors for each five-year interval in the two time
series that had few if  any collinearity issues.

Calibrating and building time-specific models
Next, we built calibrated models for each set of occurrences and
predictors in each of the five-year intervals in the M2 and MC
time series. We used the R ENMeval package to identify optimal
MaxEnt parameter settings for each interval (Muscarella et al.
2014, Kass et al. 2023). ENM automatically creates a collection
of models across a range of settings and uses Akaike’s
Information Criterion corrected for small sample size (AICc;
Akaike 1974) to measure information loss among the models. The
combination of MaxEnt parameter settings that results in the
lowest AICc value is taken to be an optimal tuning configuration
for a given set of inputs. We used these optimal settings to
construct a final model for each five-year interval in the two time
series. For each of the ENMeval calibration runs, and in the final
MaxEnt model run, we used 10,000 background locations
randomly selected from across the study area and performed a
10-fold cross validation in which 70% of the occurrences were
selected for training and 30% for testing in each repetition (Phillips
et al. 2017). Cloglog format was used throughout. This model
calibration and construction process was performed in triplicate
for each five-year interval to produce the final models that we
used in the subsequent time series analysis.
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Analyzing time series results
We analyzed our time series results by creating trend maps
showing regions of positive and negative change in climatic
suitability per five-year interval across the study area over the 40-
year span of the study (Fig. 1C). We used the Theil-Sen median
slope estimate to build these trend maps. Theil-Sen provides a
non-parametric means of robustly fitting a line to a set of points
by finding the median slope of all the lines through all pairs of
points in the set. In our case, the estimate was applied for each
pixel across the eight raster layers comprising the final models of
climatic suitability for each 40-year time series. There were, thus,
eight points, one per five-year interval, in the slope calculation
for each pixel in the resulting trend maps. We used Mann-Kendall
Z values to determine the statistical significance of the resulting
trends (Theil 1950, Sen 1968).  

We then quantified the overall direction and speed of shifts in
climatic suitability observed in the trend maps. We used the
movement of weighted centroids to characterize these shifts.
Weighted centroids represent the geometric center of all pixels in
the studied area, weighted by their suitability index (VanDerWal
et al. 2013). We chose weighted centroids for this purpose because
of their ability to account for information derived from across a
species’ entire modeled range. We quantified movement by
measuring length and direction of the vector between weighted
centroids of the 1980 and 2015 probability maps.  

Finally, we examined trends in the values of the most important
variables across the time series. Top contributing variables were
those that appeared in half  or more of the 24 final models in the
triplicated time series; these variables were ranked by their average
permutation importance across the three runs (Searcy and Shaffer
2016). For the top, study-wide contributing variables, we
computed Theil-Sen slopes to visualize patterns of change in the
values of the M2 and MC variables across the study area. We then
examined trends in the relative contributions (i.e., permutation
importance) of each of these top variables per five-year interval
across the 40-year span of the study.  

The final models in both time series were qualitatively judged for
reasonableness on the basis of first-hand knowledge of the species
and its environmental preferences and what can be inferred about
climatic contexts from published estimates of Cassin’s Sparrow’s
North American range. We used the Area Under the Receiver
Operating Characteristic (ROC) Curve (AUC; Fielding and Bell
1997), the True Skill Statistic (TSS; Allouche et al. 2006), and
Percent Correctly Classified (PCC; Warren and Seifert 2011) as
measures of model accuracy.

RESULTS

Evaluation of model performance
Our models exhibited moderate performance across the 24 final
models in each triplicated time series according to their mean
AUC, PCC, and TSS values (Table 3). In evaluating model
performance, we regarded AUC measures < 0.7 as low, 0.7–0.9 as
moderate, and > 0.9 as high; similarly, we regarded TSS and PCC
measures < 0.5 as poor, 0.5–0.8 as useful, and > 0.8 as good
(Arenas-Castro et al. 2018). The AICc estimate of information
quality in the final models within and across the two time series
was highly consistent. Against these metrics, we judged the
observed level of performance to be a sufficient basis for

 Table 3. Overall model performance for the M2 and MC time
series. Metrics include Area Under the Receiver Operating
Characteristic (ROC) Curve (AUC), Percent Correctly Classified
(PCC), True Skill Statistic (TSS), and Akaike’s Information
Criterion corrected for small sample size (AICc). Mean ±
standard error used throughout, n = 24 in both time series.
 
Time
series

AUC PCC TSS AICc

M2 0.817 ± 0.009 0.718 ± 0.023 0.528 ± 0.017 1991.248 ± 27.345
MC 0.812 ± 0.007 0.734 ± 0.008 0.789 ± 0.020 1963.185 ± 23.849

examining the broad trend patterns displayed by the time series
models, which was the primary focus of the study. The observed
spatial distribution of suitable conditions corresponded well with
what is known about the natural history of the species and
published range maps.

Evaluation of suitability trends

Overall trends
The study area encompassed approximately 3.91 x 106 km². Broad
areas of climatic suitability change across the study area were
observed in both time series over the past 40 years. The most
favorable climatic conditions for Cassin’s Sparrow have generally
concentrated in the southeastern regions of the study area
according to both the M2 and MC time series; however, over time,
a northwesterly shift in areas of high suitability is apparent in
both series (Figs. 2A, 3A). The Theil-Sen trend maps also show
a northwesterly movement in increasing climatic suitability over
the past 40 years, although the patterns of change are more
broadly diffuse in the M2 series, as described in greater detail
below (Figs. 2B, 3B). An overall increase in climatic suitability
was identified over approximately 54.9% of the study area (~21.49
x 105 km²) in the M2 time series and 69.5% of the study area
(~27.21 x 105 km²) in the MC series (Table 4). Areas showing an
overall decrease in climatic suitability ranged in size from
approximately 40.1% (~15.72 x 105 km²) in the M2 time series to
24.4% of the study area (~9.54 x 105 km²) in the MC series.

Statistically significant trends
Areas of statistically significant change at the 95% confidence
level are relatively small, and the rates of positive and negative
change in those regions are low (Table 4). Theil-Sen results in the
M2 series indicate that the estimated probabilities of climatic
suitability have been increasing by an average of 0.03 every five
years for the past 40 years across 6.2% of the study area, with a
corresponding average decrease in estimated probabilities of 0.05
every five years over 0.5% of the region. Statistically significant
positive trends were concentrated in the central, northwestern,
and far southwestern regions of the study area, whereas
statistically significant negative trends concentrated in the
southeast and central southwest, imparting a west to
northwesterly axis to these positive shifts that is consistent with
the weighted centroid analysis, as described below.  

Theil-Sen results for the MC time series paint a similar picture.
Probability estimates of climatic suitability, within areas of
statistically significant change, have been increasing by an average
of 0.03 every five years for the past 40 years across 5.5% of the
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 Fig. 2. M2 climatic suitability trends showing the averaged
results from three time series runs. (A) Estimated probabilities
of climatic suitability for Cassin’s Sparrow for each of the five-
year intervals spanning 1980 to 2019. Probability values range
from 0.0 to 1.0 with warmer colors indicating more favorable
conditions. (B) Spatial distribution of Theil-Sen slopes showing
the rate of change in probabilities of climatic suitability per
five-year interval across the 40-year time series. Positive trends
are indicated in green, negative trends in red. Statistically
significant positive and negative trends at the 95% confidence
level are shown in dark green and red, respectively. Colored
outlines indicate the northern extent of Cassin’s Sparrow’s U.S.
breeding (red) and non-breeding (blue) ranges. Cassin’s
Sparrow’s summer, breeding range encompasses all of the
species’ winter, non-breeding range. The yellow box shows the
location of a shift in weighted centroids for climatic suitability
from 1980 (ᴏ) to 2015 (•).
 

study area, with an accompanying average decrease in estimated
probabilities of 0.06 every five years over 0.9% of the region (Table
4). Statistically significant positive trends concentrated in three
clusters, one each in the northwest and northeast, the third in a
central southwest region, which, by contrast, showed a negative
trend in the M2 analysis. However, there was a statistically
significant negative trend in the southeast region for the MC series
that coincides with the pattern observed for the M2 series.

Patterns of climatic suitability shift
Overall shifts in the climatic suitability for Cassin’s Sparrow were
observed in both time series. The 40-year displacement of the
weighted centroid for suitability in the M2 time series was

 Fig. 3. MC climatic suitability trends showing the averaged
results from three time series runs. See Figure 2 caption for
additional detail.
 

approximately 104 km and had a westerly trajectory (282°). This
pattern contrasted with that seen in the MC time series, which
showed a 40-year displacement of 75 km along a northwesterly
trajectory (309°; Fig. 4). Centroid movement in the M2 time series
shows a higher change velocity than that seen in the MC time
series (2.60 km/yr vs. 1.85 km/yr, respectively).

Evaluation of variable trends

Trends in the MERRA-2 (M2) predictors
Seven M2 variables appeared in more than half  of the models in
the M2 time series (Table 5). Each variable demonstrated complex
patterns of non-constant spatial and temporal trends across the
study area (Fig. 5), making it difficult to generalize about
increasing or decreasing conditions. For example, Theil-Sen
analysis showed generally positive trends across the study area
for SPEED, QV2M, PREVTOT, and SWGNT, with positive
change centrally located in the study area for SWGNT,
concentrated in northern, northeastern, and southeastern regions
for QV2M, and broadly scattered in SPEED and PREVTOT.
Predominantly negative trends were seen in EVPSOIL and
EVPINTR, with EVPSOIL’s negative changes concentrated in
the southwest and EVPINTR’s broadly distributed across the
entire study area. Nearly equivalent areas of overall positive and
negative change were observed for TAUTOT (Table 6), with
positive change concentrated in the north and southeast. The M2
trends generally lacked statistical significance.
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 Table 4. Theil-Sen median slope analysis of the study’s two time series. Results are reported for the map regions in Figures 2B and 3B
that exhibited change at any level of statistical significance (overall trends) as well as statistically significant change at the 95% confidence
level (statistically significant trends). Results are based on the three trend maps produced by the triplicated runs in each time series and
show mean ± standard error across these three maps. Positive (Pos) and negative (Neg) trends are indicated by the corresponding
positive and negative Mann-Kendall Z scores (Z). Theil-Sen slope values (TS) represent the rate of change in estimated probabilities
of climatic suitability per five-year interval across the 40-year time series in areas showing statistically significant trends.
 
Time series Overall trends Statistically significant trends

km2 x 105 % of area Z km2 x 105 % of area TS ∆ / 5-yr

M2 Pos 21.49 ± 3.96 54.9 ± 10.0 3.09 ± 0.01 2.41 ± 0.64 6.2 ± 1.6 0.03 ± 0.05
Neg 15.72 ± 1.28 40.1 ± 3.2 −2.85 ± 0.15 0.19 ± 0.07 0.5 ± 0.2 −0.05 ± 0.01

MC Pos 27.21 ± 1.07 69.5 ± 2.6 3.34 ± 0.08 2.15 ± 0.11 5.5 ± 0.3 0.03 ± 0.01
Neg 9.54 ± 0.06 24.4 ± 2.7 −2.09 ± 0.01 0.37 ± 0.05 0.9 ± 0.1 −0.06 ± 0.02

 Fig. 4. Maps showing the direction, distance, and velocity of
40-year shifts in the weighted centroids for climatic suitability
for Cassin’s Sparrow in (A) the M2 time series and (B) the MC
time series from 1980 (ᴏ) to 2015 (•). For orientation, Roswell,
New Mexico, is the city on the western boundary of the maps.
Base map courtesy of the USGS with annotations by the
authors.
 

Trends in the MERRAclim-2 (MC) predictors
Seven MC variables also appeared in more than half  of the models
in the MC time series (Table 5). These variables demonstrated
complex patterns of changing spatial and temporal trends across
the study area as well (Fig. 5). Theil-Sen analysis showed
predominantly positive trends across the study area for
MC_Bio08, MC_Bio15, and MC_Bio05, with large expanses of
positive change concentrated centrally and in the northwest
region of the study area for MC_Bio05, concentrated in the
southwest for MC_Bio08, the west and southwest for MC_Bio15.
Negative trends dominated in MC_Bio14 and MC_Bio18,
especially in the western half  of the study area. Nearly equivalent
areas of positive and negative change were seen in MC_Bio03 and
MC_Bio13 (Table 6), with broadly scattered patches of change
apparent for each variable throughout the study area. Most of
the trends observed in the MC variables also lacked statistical
significance.

Variable contribution trends across the time series
The relative importance of the top contributing variables also
varied across the 40-year span of the study (Fig. 6). In the M2
time series, we observed a generally increasing trend in the
contributions of EVPINTR to each five-year interval’s final
model and a generally decreasing trend in the contributions of
QV2M and SWGNT. SPEED and EVPSOIL were consistently

 Table 5. Summary of the top contributing variables in the study’s
M2 and MC time series. Variables are ordered first by the number
of times the variable appeared in the final models of the eight,
five-year intervals of the triplicated times series (n), followed by
the variable’s mean permutation importance (PI) ± standard error
across those appearances.
 
Variable n PI Description

M2 time series
 SPEED 24 18.3 ± 1.7 Surface wind speed (m/s)
 EVPSOIL 24 12.4 ± 1.9 Bare soil evaporation energy flux (W/m²)
 QV2M 24 6.2 ± 1.2 2-meter specific humidity (kg/kg)
 EVPINTR 20 19.3 ± 1.5 Interception loss energy flux (W/m²)
 TAUTOT 17 9.9 ± 1.8 Optical thickness of all clouds
 PREVTOT 15 16.4 ± 2.9 Total re-evaporation/sublimation of precipitation

((kg/m²)/s)
 SWGNT 13 20.8 ± 2.8 Surface net downward shortwave flux (W/m²)
MC time series
 MC_Bio08 24 39.6 ± 3.1 Mean temperature of the wettest quarter (°C)
 MC_Bio14 19 11.1 ± 1.0 Precipitation of the driest month (mm)
 MC_Bio18 18 23.2 ± 2.9 Precipitation of the warmest quarter (mm)
 MC_Bio03 16 10.7 ± 2.0 Isothermality [(MC_Bio2/MC_Bio07)*100] (%)
 MC_Bio15 15 10.6 ± 1.3 Precipitation seasonality (Coefficient of variation)

(%)
 MC_Bio05 15 9.2 ± 3.7 Maximum temperature of the warmest month (°C)
 MC_Bio13 12 8.1 ± 2.6 Precipitation of the wettest month (mm)

high contributors; TAUTOT and PREVTOT were consistently
moderate contributors. In the MC series, MC_Bio14 and
MC_Bio03 show generally increasing trends; MC_Bio08 showed
a sharply decreasing trend. MC_Bio18 was a consistently high
contributor, with MC_Bio15, MC_Bio05, and MC_Bio13
making consistent contributions at moderate to low levels.

DISCUSSION

Complex 40-year patterns of changing climatic suitability

Velocity of change consistent with other findings
The shifts in favorable conditions we observed across both time
series are consistent with what has been reported for Cassin’s
Sparrow and many other North American grassland bird species
(Bateman et al. 2016, Huang et al. 2023). Bateman et al. (2016),
for example, found an average bioclimatic velocity of 1.27 km/yr
to the west, northwest, and north over the past 60 years in the
potential breeding distributions of 285 species of land birds across
the Continental U.S., with some potential breeding populations
shifting at rates of up to 5.51 km/yr. Likewise, a recent study by
Huang et al. (2023) reported a mean bioclimatic velocity of 2.25
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 Fig. 5. Maps showing the Theil-Sen trends for the top contributing variables in the M2 and MC time series, as shown in Table 5.
Positive trends are shown in green; negative trends are shown in red. Color intensity represents the rate of change in the units of
measure for the variable per five-year interval across the 40-year time series.
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 Table 6. Theil-Sen trend analysis of the top contributing variables
in the study’s M2 and MC time series. Positive (Pos) and negative
(Neg) trend coverage areas represent the trend proportion across
the entire study area and are calculated for the map regions in
Figure 5 that exhibited overall change at any level of statistical
significance.
 
M2 variable % of area MC variable % of area

SPEED Pos 62.5 MC_Bio08 Pos 67.5
Neg 29.8 Neg 25.5

EVPSOIL Pos 34.4 MC_Bio14 Pos 17.2
Neg 63.1 Neg 73.3

QV2M Pos 75.0 MC_Bio18 Pos 36.5
Neg 22.3 Neg 62.1

EVPINTR Pos 5.0 MC_Bio03 Pos 44.4
Neg 76.7 Neg 53.4

TAUTOT Pos 46.1 MC_Bio15 Pos 80.0
Neg 53.4 Neg 14.8

PREVTOT Pos 57.5 MC_Bio05 Pos 85.6
Neg 41.7 Neg 7.9

SWGNT Pos 79.5 MC_Bio13 Pos 54.6
Neg 20.4 Neg 43.7

km/yr in 29 species of grassland birds along predominantly east-
west axes of increasing environmental suitability, accompanied
by an estimated, mean abundance-based velocity of 5.02 km/yr
along more northerly inclined axes of increasing abundance.

Trends and patterns of change vary across time series
Our two time series reveal contrasting histories of climatic
suitability change over the past 40 years. The MC time series
paints a more favorable picture of changing conditions than what
is seen in the M2 time series, with areas of overall improving
conditions exceeding areas of declining conditions by 45.1% in
the former and only 14.8% in the latter (Table 4). This contrast
in overall trend is particularly apparent across the western regions
of the study area and within the USGS GAP boundaries of
Cassin’s Sparrow’s northernmost breeding range (Figs. 2B, 3B).
In the west, M2-driven model results portray a northerly shift in
improving conditions across the full extent of the study area. With
the MC-driven models, changes are not nearly as distinct nor are
they as extensive. The M2-driven model results show sharply
improving climatic suitability in the northeastern extent of the
breeding range and a fall-off  along the western boundaries of
Cassin’s Sparrow’s breeding and non-breeding ranges, whereas
the MC-driven model results show improving climatic suitability
in the northeastern region and a fall-off  along the western
boundary of only Cassin’s Sparrow’s non-breeding range.

State-level scale highlights differing trends and patterns
The differences between the two time series become more
noticeable when results are considered at the state level. Cassin’s
Sparrow’s breeding and non-breeding ranges comprise seven
states within the Continental U.S.: Arizona (AZ), Colorado (CO),
Kansas (KS), Nebraska (NE), New Mexico (NM), Oklahoma
(OK), and Texas (TX) (Figs. 2B, 3B). Cassin’s Sparrow is found
in four of these states only during the breeding season (i.e., CO,
KS, NE, and OK). With KS and OK, we see similar trend patterns
across the two time series. On the other hand, for CO, we see a
sharp decline in suitability in the M2 time series, especially in the
central part of the state, and a general improvement in conditions

in the MC series. We see the inverse pattern for NE across the two
series, with the decline in the MC series in the north-central part
of the state.  

Within the U.S., Cassin’s Sparrow has historically been most
abundant in AZ, NM, and TX (North American breeding bird
survey, https://www.pwrc.usgs.gov/bbs/). These states represent
the heart of Cassin’s Sparrow’s U.S. range, and it is here we see
the most striking differences in the M2 and MC time series’ model
results. In the M2 series, climatic suitability in areas that
historically accommodated seasonal range expansion between
non-breeding and breeding seasons is shown to have been
declining over the past 40 years in AZ and NM. In contrast,
climatic suitability in these areas appears to be improving or
largely unchanged in the MC series. In TX, M2 model results
indicate improving breeding season conditions in northern
regions and decreasing suitability along the state’s southern
border in breeding and non-breeding areas; similar but less
pronounced patterns are observed in the MC time series.

Implications for conservation practice
The variability we see across the two time series and across the
species’ geographic range has practical implications for
conservation policy development and implementation. Population
size, species abundance, and similar attributes are a central
component of essentially all state-level conservation status
formulation processes (Association of Fish and Wildlife Agencies
State Wildlife Actions Plans, https://www.fishwildlife.org). It has
been shown that the combination of bioclimatic predictors with
other environmental attributes, such as ecosystem functional
attributes, edaphic variables, topographic data, vegetation indices,
and microclimatic variables, can capture factors affecting
abundance rather than just occurrence, thereby yielding
suitability model results that are often highly correlated with
abundance (Cabello et al. 2012, Weber et al. 2017, Leitão and
Santos 2019, Regos et al. 2020, Arenas-Castro and Sillero 2021,
Cavalcante et al. 2022). In our results, we see that patterns of
historical change in environmental suitability can vary widely
depending on the spatial extent considered and on whether time
series models are driven by bioclimatic variables alone or by
variables more aligned with ecosystem functioning. It is possible
that our results are an indicator that demographic and other
observational survey results may vary greatly across the species’
range as well, which could lead to differing conclusions regarding
the conservation status of Cassin’s Sparrow and possibly account
for the inconsistencies we observe in the literature and among
states regarding this species’ status.

Complex 40-year patterns of changing environmental drivers

Drought and seasonal precipitation are important macroclimatic
drivers
The MC time series provides insights into how climatic changes
have influenced seasonal trends that are important to Cassin’s
Sparrow (Table 5). The three most contributory variables in the
MC time series are mean temperature of the wettest quarter
(MC_Bio08), which appears to have been generally increasing
across Cassin’s Sparrow’s range over the past 40 years while
declining in importance as an environmental driver; total
precipitation of the driest month (MC_Bio14), which has been
decreasing across Cassin’s Sparrow’s range while increasing in
importance as an environmental driver over the same period of
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 Fig. 6. Diagrams showing the relative importance of the top contributing variables across the five-year intervals of the M2 (left) and
MC (right) time series over the 40-year span of the study. The variables named in the first column of each diagram are listed in
descending order of their overall contribution to the time series, as shown in Table 5. The colored lines associated with each variable
show how the relative importance of the variables changed over the 40-year span of the study. These trends in relative importance
provide clues to the environmental factors driving Cassin’s Sparrow’s biological response to changing climatic conditions, as
described in the accompanying text.
 

time; and precipitation of the warmest quarter (MC_Bio18),
which has also been generally decreasing across the species’ range
but displays a discontinuous patchwork of positive and negative
trends while remaining one of the top environmental drivers over
the 40-year span of the study. Collectively, these three variables
appear to confirm that the long-running drought conditions
across southwestern North America have had a major influence
on climatic suitability for Cassin’s Sparrow (Stahle 2020, Williams
et al. 2020). That MC_Bio18 is consistently the most important
variable across the time series is notable, given that this variable
essentially characterizes the seasonal precipitation pattern of the
North American Monsoon (Adams and Comrie 1997, Becker
2021). The next two most contributory variables are isothermality
(MC_Bio03) and precipitation seasonality (MC_Bio15). The
consistent contribution of these two variables to the MC time
series suggests that variability in both temperature levels and
precipitation amounts has also had a historical influence on
climatic suitability for Cassin’s Sparrow.

Wind speed and drying soils are important microclimatic drivers
The M2 time series provides insights into how trends in ground-
level factors have influenced environmental suitability for Cassin’s
Sparrow (Table 5). The two most important variables in the M2
time series are surface wind speeds (SPEED), which appears to
have been generally increasing across the study area over the past
40 years while remaining a consistently top model contributor,
and bare soil evaporation energy flux (EVPSOIL), which is
generally decreasing across the study area over this period,
especially in the southwestern region, while also remaining a top
contributor across the time series. Wind has a mixing effect on air
near the ground that can increase the evaporation of water from
soil and plant surfaces until a point is reached where drying
conditions take over (Tran et al. 2016, Lian et al. 2022). Further
evidence of this phenomenon is seen in the water loss from plant
surfaces, as reflected by interception loss energy flux (EVPINTR),
the fourth most contributory variable, which has been decreasing
over the past 40 years while its importance as a driver in our
models has steadily increased. Total re-evaporation of
precipitation (PREVTOT), which can contribute to reduced
precipitation efficiency (i.e., the amount of falling precipitation
that evaporates or sublimates before reaching the ground), is the

sixth most contributory variable. In our results, there has been a
generally increasing trend in PREVTOT across much of the study
area while the driver itself  has remained moderately consistent in
importance across the 40-year span of the study. These factors,
along with increasing shortwave radiant energy from the sun
(SWGNT) and decreasing cloud thickness (TAUTOT), the
seventh and fifth most important variables, respectively, appear
to be contributing to decreasing water content of the atmosphere
(QV2M) across the North American Southwest. Our results
indicate that QV2M itself, the third most important contributory
variable overall, has decreased in importance as an environmental
driver over the years as SPEED, EVPSOIL, and EVPINTR have
become the dominant influences. Taken together, however, the
higher surface wind speeds, reduced bare soil evaporation, drying
air, and lower precipitation efficiency reflected in the M2 time
series’ top four variables suggest that microclimatic drying may
be the particular aspect of varying monsoon precipitation of
importance to Cassin’s Sparrow (Tran et al. 2016, Lehmann et al.
2018, Cheng et al. 2021, Lian et al. 2022, Peevey 2022).

Implications for future status assessments
The observed connection between top contributing variables,
monsoon rainfall, and ground-level drying conditions is
consistent with what is known about Cassin’s Sparrow’s ground-
dwelling habit and the importance of microclimatic conditions to
almost all aspects of the species’ life (Schnase and Maxwell 1989,
Schnase et al. 1991). Our results are also consistent with research
showing that increasing temperatures, increased temperature and
precipitation variability, and drying soils are potent drivers of
environmental suitability for many species found across the arid
grasslands of the southwestern U.S. (Varner and Dearing 2014,
Lortie et al. 2022). All told, it appears that spatiotemporal
attributes of North American monsoon precipitation; variables
related to the surface moisture conditions of the soil, air, and
vegetation; and surface wind speed should be considered variables
of particular relevance to Cassin’s Sparrow and perhaps key to
understanding the species’ conservation status. It is important to
note, however, that large-scale inferences are often complicated
by changing properties in the underlying processes that drive
phenomena, such as the spatially and temporally varying trends
we see in the M2 and MC variables (Rollinson et al. 2021). As a
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result, Cassin’s Sparrow’s response to these non-constant trends
tends to be complex and localized, which limits our ability to
generalize about widespread trends in overall conditions that may
be influencing the species.

CONCLUSION
We have used an automated and reproducible approach to
retrospective ENM to better understand historical patterns of
changing climatic suitability for Cassin’s Sparrow, the key drivers
underlying the species’ response to a changing climate, and
whether that response might contribute to the variability we see
across various status assessments for the species. To do this, we
built two multi-decadal, time- and variable-specific MaxEnt time
series based on NASA’s MERRA-2 reanalysis. Trend analysis of
the MC time series provided a seasonal, macroclimatic perspective
that confirmed the importance of monsoon rainfall in Cassin’s
Sparrow’s response to changing environmental conditions. Trend
analysis of the M2 time series provided a microclimatic view that
revealed the importance of increasing wind speed and drying land
surface conditions to the species’ response. Estimates of climatic
suitability for Cassin’s Sparrow in the MC time series were
generally more favorable than what we observed in the M2 time
series. The differences between the two time series were even more
pronounced when considered at the state level. These two findings
could have important implications for conservation practice,
given that the vast majority of conservation policy decisions and
management actions play out at the state level and often rely
heavily on climatic suitability models based solely on bioclimatic
predictors. Furthermore, our results suggest that modeled
estimates of climatic suitability for Cassin’s Sparrow can vary
widely depending on the temporal frame, spatial extent, and
environmental drivers considered. This likely reflects Cassin’s
Sparrow’s localized response to non-constant, spatiotemporal
trends in the drivers themselves. This variability mirrors the
inconsistencies we see in the current literature regarding this
species’ status and points to the need for an updated, state-by-
state examination of Cassin’s Sparrow’s regional vulnerabilities.
Given the variability we observed in climatic suitability across
areas occupied by Cassin’s Sparrow during the breeding season,
a closer look at the nature and scope of historical, inter-annual
range changes and local population trends would also be helpful
in clarifying the relationship between climatic suitability and the
demographic status of the species. Retrospective ENM that
incorporates both time and variable specificity, as we have done
here, appears to be a promising approach to understanding the
complexities of a species’ response to changing climatic
conditions and a useful adjunct to assessments of a species’
conservation status.
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Appendix A. MERRA-2 (M2) variable definitions.* 
 

M2T1NXSLV 

 

2D Atmospheric variables 

TS Surface skin temperature (K) 
– An approximation for the temperature of the Earth's 
tropopause, which lies about 17 km (11 miles) above the 
surface, expressed in degrees Kelvin. The tropopause is the 
boundary between the turbulent mixing-dominated 
troposphere and the more stable stratosphere. 
 

QV2M 2-meter specific humidity (kg/kg) 
– The amount of water vapor contained in a unit amount of 
air, generally expressed as kg of water per kg of air. 
  

T2M 2-meter air temperature (K) 
– The air temperature 2m above the ground, expressed in 
degrees Kelvin. 
    

M2T1NXFLX 2D Surface fluxes 

EFLUX Positive latent heat flux (W/m2) 
– The exchange of energy between the surface of the Earth and 
the atmosphere when water evaporates from or condenses 
onto the surface, expressed in Watts per square meter. Positive 
latent heat flux means that evaporation is occurring. 
  

HFLUX Positive sensible heat flux (W/m2) 
– The exchange of energy between the surface of the Earth and 
the atmosphere when no state change is involved and energy is 
transferred by conduction, expressed in Watts per square 
meter. Positive sensible heat flux means heat is flowing from 
the surface to the atmosphere.  
 

SPEED Surface wind speed (m/s) 
– The speed of wind flow near the Earth's surface, expressed 
in meters per second. 
 
  

 
* These summaries were derived from definitions provided in: J. R. Holton, J. A. Curry, and J. A. 

Pyle, Eds., Encyclopedia of atmospheric sciences. Amsterdam; Boston: Academic Press, 2003. 
Details about the MERRA-2 collection and variable naming conventions can be found in in: 
Bosilovich, M.G., R. Lucchesi, and M. Suarez. 2016. “MERRA-2: File Specification.” GMAO 
Office Note 9 (Version 1.1): 1–73.  
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PREVTOT Total re-evaporation/sublimation of precipitation ([kg/m2]/s) 
– The amount of precipitation that evaporates (water to water 
vapor transition) or sublimates (snow or ice to water vapor 
transition) while falling through the atmosphere and fails to 
arrive at the land surface, expressed in mm per second. [1 kg 
of water spread over a square meter (kg/m2) = 1 mm] 
  

PRECTOTCORR Total observation-corrected surface precipitation ([kg/m2]/s)  
– Total precipitation modeled from atmospheric physics 
corrected with satellite and/or gauge-based measurements, 
expressed in mm per second.  [1 kg of water spread over a 
square meter (kg/m2) = 1 mm] 
 
 

M2T1NXRAD 2D Surface and top-of-atmosphere radiation fluxes  

ALBEDO Surface albedo  
– The amount of sunlight reflected by the Earth's surface, 
generally expressed as a decimal value with 1.0 being a 
perfect reflector and 0.0 absorbing all incoming light. 
 

LWGNT Surface net downward longwave flux (W/m2) 
– The rate of flow of radiant energy reaching the Earth's 
surface in the thermal infrared spectrum (4-100 µm), 
expressed in Watts per square meter. LWGNT is a result of 
atmospheric absorption, emission, and scattering within the 
entire atmospheric column. 
  

SWGNT Surface net downward shortwave flux (W/m2) 
– An estimate of the total amount of shortwave (0.3-4.0 µm) 
radiative energy that reaches the Earth's surface, expressed in 
Watts per square meter. SWGNT is an important source of 
energy and important influence on land-atmosphere and 
vegetation interactions, SWGNT has many applications in the 
general and applied sciences. 
  

TAUTOT Optical thickness of all clouds 
– A measure of attenuation of the light passing through the 
atmosphere due to the scattering and absorption by cloud 
droplets. TAUTOT is a dimensionless, monotonically 
increasing function that approaches zero as cloud thickness 
approaches zero. 
 

CLDTOT Total cloud area fraction 
– The proportion of the sky covered by all the visible clouds, 
an important influence on downward solar radiation.  
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M2T1NXLND 2D Land surface variables 

LAI Leaf area index 
– A complex variable that relates the size of plant canopies to 
canopy density and the angle at which leaves are oriented to 
one another and to incident light. A dimensionless quality that 
is often used as an indicator of plant growth rate. 
 

GRN Vegetation greenness fraction 
– The proportion of ground covered by green vegetation. 
Values range from 0 to 1. 
 

GWETPROF Average profile soil wetness 
– The amount of water and water vapor present in the soil, 
generally expressed as the proportion of water present in a 
given volume of soil. Values range from 0 to 1. 
  

GWETROOT Root zone soil wetness 
– The amount of water and water vapor available to plants in 
the root zone, generally considered to be the upper 200 cm of 
soil, expressed as the proportion of water present in a given 
amount of soil. Values range from 0 to 1. 
  

TSURF Mean land surface temperature (K) 
– The radiative temperature of the Earth's land surface, 
expressed in degrees Kelvin. 
  

TSAT Surface temperature of saturated zone (K) 
– Surface temperature of soil in which all the interstices or 
voids are filled with groundwater, expressed in degrees 
Kelvin. 
  

FRWLT Fractional wilting area 
– Proportion of the land surface where the moisture content 
causes plants to wilt. Values range from 0 to 1. 
 

QINFIL Soil water infiltration rate ([km/m2]/s)) 
– A measure of how fast water enters the soil, expressed in mm 
per second.  [1 kg of water spread over a square meter (kg/m2) 
= 1 mm] 
  

GHLAND Downward heat flux into topsoil layer (W/m2) 
– The amount of thermal energy transferred to the soil, which 
can be affected by such factors as soil and air temperature, 
soil water content, canopy characteristics, and wind speed, 
expressed in Watts per square meter. 
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WCHANGE Total land water change per unit time ([kg/m2]/s) 
– Total rate of movement of water to and from the Earth's 
surface, expressed in mm per second.  [1 kg of water spread 
over a square meter (kg/m2) = 1 mm].  
  

ECHANGE Total land energy change per unit time (W/m2) 
– Total rate of energy transferred to and from the Earth's 
surface, expressed in Watts per square meter. 
  

PRMC Total profile soil moisture content (m3/m3) 
– The amount of water present in the soil, expressed as cubic 
meters of water per cubic meter of soil. 
  

RZMC Root zone soil moisture content (m3/m3) 
– The amount of water in the soil root zone, expressed as cubic 
meters of water per cubic meter of soil. 
  

EVPSOIL Bare soil evaporation energy flux (W/m2) 
– The rate of radiant energy transfer when water evaporates 
from a saturated land surface, expressed in Watts per square 
meter.  
  

EVPTRNS Transpiration energy flux (W/m2) 
– The amount of energy released as water evaporates at the 
plant leaf / atmosphere interface, expressed in Watts per 
square meter. 
  

EVPINTR Interception loss energy flux (W/m2) 
– The portion of precipitation that is returned to the 
atmosphere through evaporation from plant surfaces or 
absorbed by plants and does not reach the ground, expressed 
in Watts per square meter. 
  

EVLAND Evaporation from land ([kg/m2]/s) 
– The rate of moisture transfer from the land surface to the 
atmosphere, expressed in mm per second.  [1 kg of water 
spread over a square meter (kg/m2) = 1 mm]. Evapo-
transpiration is the sum of all processes by which water moves 
from the land surface to the atmosphere via evaporation 
(EVLAND, EVPINTR, etc.) and transpiration (EVPTRNS). 
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