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Comparación y combinación del uso de unidades de registro autónomas y conteos
tradicionales para monitorear a Colinus virginianus
Emma E. DeLeon 1  , Michael W. Hook 1, Michael F. Small 1,2 and Amy K. Tegeler 1

ABSTRACT. We examined the use of autonomous recording units for monitoring Northern Bobwhite (Colinus virginianus) in South
Carolina and compared results with those of traditional point count surveys conducted simultaneously at overlapping points. We
assessed seasonal patterns and quail encounter rates for traditional and recorded surveys and used random forest modeling to determine
which location and survey-based variables are most important. We found both survey methods have similar encounter rates, but seasonal
occupancy rates are significantly higher when the more extensive automated recording data are used. Both survey methods indicate
that location-based variables are most important to encounter rate, and both adequately account for survey detectability, but the use
of recordings reduces survey bias. The autonomous recording method also permits an increase in survey and season length without
increasing the labor necessary for monitoring. Both survey methods indicate a peak encounter rate in June consistent with the current
protocols and with similar studies in nearby regions. The use of recordings, however, allows for extensive tracking of seasonal patterns
and would be beneficial for long-term monitoring. Overall, traditional methods are more conducive to abundance surveys, whereas
recordings are more appropriate for occupancy or encounter rate studies. We suggest a combination of both point count and autonomous
recording methods as a feasible way to expand and improve monitoring of bobwhite populations.

RESUMEN. Examinamos el uso de unidades de registro autónomas para monitorear a la especie Colinus virginianus en Carolina del
Sur y comparamos los resultados con los monitoreos tradicionales de puntos de conteo realizados simultáneamente en puntos que se
sobreponen. Evaluamos los patrones estacionales y las tasas de encuentro de codornices para censos tradicionales y muestreos grabados
y utilizamos modelos forestales aleatorios para determinar cuáles ubicaciones y variables basadas en los muestreos son más importantes.
Descubrimos que ambos métodos de muestreo tienen tasas de encuentro similares, pero las tasas de ocupación estacional son
significativamente más altas cuando se utilizan datos de registros automatizados más extensos. Ambos métodos de muestreo indican
que las variables basadas en la ubicación son las más importantes para las tasas de encuentro, y ambos explican adecuadamente la
detectabilidad durante los muestreos, pero el uso de grabaciones reduce el sesgo de la encuesta. El método de registro automático
también permite aumentar el muestreo y de la duración de la temporada sin aumentar la mano de obra necesaria para el seguimiento.
Ambos métodos de muestreo indican una tasa máxima de encuentro en junio consistente con los protocolos actuales y con estudios
similares en regiones cercanas. Sin embargo, el uso de grabaciones permite un seguimiento exhaustivo de los patrones estacionales y
sería beneficioso para el seguimiento a largo plazo. En general, los métodos tradicionales son más propicios para los estudios de
abundancia, mientras que las grabaciones son más apropiadas para estudios de ocupación o tasas de encuentro. Sugerimos una
combinación de métodos de ambos, puntos de conteo y registro autónomo, como una forma factible de ampliar y mejorar el seguimiento
de las poblaciones de codornices.
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INTRODUCTION
The Northern Bobwhite (Colinus virginianus) is both a declining
species of concern and a managed game species. Bobwhite decline
has progressed for decades and is linked to habitat loss and
population fragmentation due to urbanization and changes in
agricultural practices (Brennan 1991, Church et al. 1993, Guthery
et al. 2000, McKenzie 2009, Hernández et al. 2013). A range-wide
adaptive management approach, including research, monitoring,
education, and habitat management, is needed to increase
populations (Brennan 1991, Palmer et al. 2011, Hernández et al.
2013). In accordance with recommendations from the National
Bobwhite Conservation Initiative (NBCI), the South Carolina
Department of Natural Resources is collaborating with other
states to conduct breeding season monitoring via standardized
point counts (Morgan et al. 2016, Chapman et al. 2020). In 2017,

we added 14 autonomous recording units (ARUs) to supplement
traditional point counts. We predicted that ARU and traditional
surveys would produce similar occupancy results and could be an
efficient way to expand survey efforts. Here, we provide a
comparison of practicality and results using ARU and traditional
point count methods. We use this assessment to make
recommendations for how each survey technique could improve
our ability to monitor bobwhite and other bird populations.  

Population monitoring is especially important as it determines
effectiveness of restoration and management strategies (Green et
al. 2017). Despite improvement in research and monitoring
techniques for bobwhite, we still need large-scale methods that
can be implemented within an adaptive management strategy
(Brennan 2002). Research suggests that the incorporation of
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ARUs improves monitoring in situations including rare species,
large geographical areas, or shortage of trained surveyors (Borker
et al. 2015, Pankratz et al. 2017, Darras et al. 2019, Haselmayer
and Quinn 2000).  

Traditional monitoring is time consuming and requires
technicians to travel to survey sites within a narrow range of dates
and times. Variability in observer experience and hearing ability
is often ignored (Brewster and Simons 2009, Digby et al. 2013).
Recent technological advances have produced ARUs capable of
results similar to, or better than, traditional surveys (Digby et al.
2013, Borker et al. 2015, Shonfield and Bayne 2017, Darras et al.
2019). Autonomous recording units can survey multiple points
over large areas at the same time. Microphones can be left to
record automatically for weeks. Files can be reviewed repeatedly
by single or multiple observers to reduce identification errors and
observer bias (Celis-Murrilo et al. 2009, Holmes et al. 2014,
Darras et al. 2019). Observers can examine recordings and
identify calls as quickly and accurately as a real-time survey
(Digby et al. 2013, Darras et al. 2019). Furthermore, ongoing
research is producing promising programs for automatically
detecting bobwhite calls (Nolan et al. 2023).  

Autonomous recording unit surveys require specialized
equipment and software (Darras et al. 2019, Shonfield and Bayne
2017). They allow for collection of copious audio data, which is
challenging to sort and archive (Digby et al. 2013, Darras et al.
2019, Shonfield and Bayne 2017). Individual ARUs cannot
determine distance and direction, so it is difficult to estimate bird
density or abundance. However, solutions to this problem are
being studied (Celis-Murillo et al. 2009, Shonfield and Bayne
2017, van Wilgenburg et al. 2017, Pérez-Granados and Traba
2021). Density of birds per area is the current NBCI
recommended metric for bobwhite population estimation (Evans
et. al 2011). The utility of occupancy surveys for producing
population estimates is under consideration (Evans et al. 2011).
However, presence/absence surveys are already helpful in
identifying study sites and in tracking changes in habitat use or
calling phenology (Evans et al. 2011, Borker et al. 2015, Darras
et al. 2019, Furnas and McGrann 2018).

METHODS

Autonomous Recorder Surveys
Fourteen Song Meter SM4 Bioacoustics Recorders (Wildlife
Acoustics, Inc., Maynard, Massachusetts, USA) were deployed
in areas of interest for bobwhite habitat management. Our study
sites were at Carolina Sandhills National Wildlife Refuge
(Carolina Sandhills) and within the Indian Creek Woodland
Savanna Restoration Initiative area (Indian Creek) both located
in South Carolina, USA (Fig. 1). Recording took place between
1 April and 31 August 2017. Microphones were located at existing
bobwhite survey points. Three microphones were placed at
Carolina Sandhills, which is ranked as a NBCI “Tier I” site. A
“Tier I” site is a focal area of interest nested within a focal
landscape and region, with all levels having appropriate habitat
and potential to support a long-term bobwhite population
(Morgan et al. 2016). Eleven microphones were placed at Indian
Creek, a cooperatively managed area of public and private lands.
Indian Creek is ranked as an NBCI “Tier II” site, a focal area
nested within a focal landscape or region (Morgan et al. 2016).

 Fig. 1. Location of survey points with and without
autonomous recording units (ARUs) in South Carolina, USA
during 2017. Points were located at two regional survey sites,
Carolina Sandhills National Wildlife Refuge (Carolina
Sandhills) and within the Indian Creek Woodland Savanna
Restoration Initiative (Indian Creek). Each site had 24 survey
points spaced at least 500 m apart. Indian Creek had 11 ARUs,
and Carolina Sandhills had three.
 

Stereo channel recordings were collected using a 24 kHz sampling
rate and were saved as .WAV files. We used the unit’s internal
microphones set to a 16-dB gain (which includes 26 dB of pre-
amplification). Autonomous recording units were programmed
to start recording at sunrise in 15-min on/off  intervals for two
consecutive hours. Recording points were visited once to deploy
ARUs and once to collect them. We only analyzed data from the
interval starting 30 min after sunrise. This is consistent with the
timing of traditional point counts and with the time frames
determined in other studies to have the most bobwhite calling
(Elder 1956, Hansen and Guthery 2001, Lituma 2017). A
technician used Raven Pro Interactive Sound Analysis software
(available from the Cornell Lab of Ornithology; Bioacoustics
Research Program 2017) to identify bobwhite calls by visually
scanning for calls and listening to audio to confirm suspected
vocalizations. Each call was tagged with its start time. The analyst
also ranked the quality of each recording: good recordings were
clear with little to no background noise, fair had repetitive noise
that did not interfere with spectrograms, and poor had noise that
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impeded observer ability to detect calls. Identifiable rainfall was
ranked as light, moderate, or heavy. For detailed weather
information, we used measurements from the Columbia South
Carolina Metropolitan Airport, the closest weather station with
comprehensive hourly data. The station was 65 km from Indian
Creek and 108 km from Carolina Sandhills, so we averaged
conditions from an hour before to an hour after recording time.
We also examined the correlation of weather station wind and
precipitation data with recording quality and occurrence of rain
observed on audio files.  

We used all available ARU data to test if  recommended seasonal
timing and survey length of traditional point counts are
appropriate for our region. We summed the daily ARU calls from
all points, then used a 7-d moving average to determine the
seasonal peak of calling activity. Using recordings where at least
one bobwhite was detected, we examined average time to detection
and determined the proportion of calls that would have been
detected using theoretical survey times of 5, 10, or 15 min. To
assess the time required for audio file analysis, we re-analyzed a
randomly selected sample of 100 5-min audio segments. The
technician used a stopwatch to record the combined time required
to navigate to the file in the Raven program, select and tag calls,
and save the selection table.

Traditional Surveys
We conducted unlimited radius, 5-min, single-observer point
counts based on NBCI guidelines (Morgan et al. 2016, Chapman
et al. 2020). Surveys took place at 14 ARU points and 34
additional points. Two surveys were conducted at each point
during the month of June for a total of 96 surveys. Observers
recorded the number of bobwhites calling at any distance in 1-
min time bands, as well as start times, temperature, percent cloud
cover, ranked wind speed, and ranked noise. Surveys occurred
within 3 h of sunrise and did not occur during rainfall, if
windspeed was above 13 km/h, or with constant background
noise.

Statistical Comparison of Survey Methods
To compare the performance of ARUs and traditional surveys as
directly as possible, we limited the traditional survey data to points
with corresponding ARU data. We limited ARU data to
recordings within our observed seasonal calling peak (25 May–
10 July). This time span is consistent with the approximately 6-
wk range recommended by NBCI for point count surveys
(Morgan et al. 2016). We compared presence/absence results for
658 peak season ARU and 28 traditional surveys using a two-
tailed t-test as well as calculating average encounter rates for each
survey type. We consider the encounter rate to be the probability
of a surveyor finding at least one bird per survey (Strimas-Mackey
et al. 2020). We also assessed seasonal ARU and traditional survey
results using Wilcoxon signed rank tests paired by point to
compare overall occupancy status and average encounter rate
throughout the season at each of the 14 survey points. To
determine if  points where birds were detected on traditional
surveys were those with higher calling rates, we used a two-tailed
t-test to compare the number of ARU calls at points with and
without birds detected on traditional surveys. Recording time of
ARUs directly overlapped with an in-person survey on four
occasions, which we compared to see if  observers and ARUs
located the same birds.

Random Forest Modeling
We used random forest modeling, a supervised machine learning
approach, to build separate model sets exploring the relative
importance of point and survey variables to traditional and ARU
results. As we were primarily interested in comparing different
methods to detect birds rather than modeling occupancy, it was
appropriate to use random forest encounter rate models (Guillera-
Arroita et al. 2015, Strimas-Mackey et al. 2020). For these
analyses, we used the full set of 658 ARU survey occasions
occurring at peak season and the full set of 96 traditional surveys
from all 48 points. For both model sets, we built classification-
type models using the randomForest package for R version 4.0.4
(Liaw and Wiener 2002). Random forest modeling is sensitive to
class imbalance (Chen et al. 2004, Strimas-Mackey et al. 2020).
Both traditional and ARU surveys resulted in fewer bird
detections than non-detections, so we used the weighted random
forest method, which penalizes incorrect classification of the
minority class more strictly (Chen et al. 2004). We weighed the
detection class inversely to the proportion in which it occurred
(1:4 in traditional data and 1:3 in ARU data) so the model
prioritized correct classification of detections three or four times
higher, respectively, than non-detections. This allowed us to keep
our full data sets rather than re-sampling the classes evenly, which
was especially important for the smaller traditional data set.  

Traditional survey variables included in model sets were point
identity, survey start time, day of year, observer, and site type, as
well as ranked windspeed, cloud cover, and noise. For ARU
models, we considered point identity, day of year, recording
quality, site type, and weather station variables (ranked cloud
condition, wind speed, and precipitation). In both cases,
temperature was positively correlated with day of year and was
not included. We used mean decrease in accuracy (MDA) to
determine variables with the greatest impact on encounter rate.
During model testing, we began with the full model and dropped
variables with MDA less than zero, or the lowest ranked variable,
in each step until only two variables remained. If  variables to be
dropped had similar MDA, we tested all alternatives. For
traditional surveys, site and observer were highly correlated, so
we began with two full model sets. For both traditional and ARU
models, point identity served as a surrogate for habitat differences.
We assessed survey models using AICc rank (Akaike Information
Criterion adjusted for small sample size), mean square error,
percent accuracy, specificity (ability to correctly classify non-
detections) and sensitivity (ability to correctly classify detections).

RESULTS

Autonomous Recorder Data
We analyzed 30,015 min of automated recordings from the full
April–August data set. Of the 2,001 surveys, the analyst rated
74.26% as good recording quality, 22.14% as fair, and 4.10% as
poor. The most common noise interference was from rainfall and
accompanying wind. Of the poor-quality recordings, 74.39% had
moderate or heavy rainfall, whereas only 0.03% of the good-
quality recordings had even moderate rainfall. Other interference
included insects, frogs, traffic, calling from other species, and
microphone static.  

In 15-min recordings where bobwhites were detected, we found
that the mean time to first detection was 5.76 min (median 5.34,
range 0.002–14.98). We divided the recordings into 5-min time
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bands and found 48.45% of first detections occurred in the first 5
min, and 77.02% within 10 min. This implies that had we used a 5-
min recording time, comparable to in-person surveys, we would
have detected birds on less than half  of the occasions found using
a 15-min recording.  

We determined the length of the calling season at each point by
calculating the number of days between the first and last bobwhite
calls detected. Mean calling season was 74 d (median 70, range 32–
105). Seasonal variation in calling, smoothed by a 7-d moving
average, shows that peak calling occurs in June and early July (Fig.
2). There is a small secondary peak in late July (Fig. 2). The highest
average call rate was 141 calls per day centered around 14 June. For
statistical comparisons using ARU data, we used data from 25
May–10 July to encompass the peak observed calling season. The
June survey window for our traditional point counts fits within the
peak calling period and should appropriately sample bobwhite
populations in our area (Fig. 2). However, surveys limited to June
may, over time, miss any seasonal shift in calling phenology and do
not include the secondary peak in July.

 Fig. 2. A 7-d moving average of daily number of Northern
Bobwhite calls across 14 South Carolina recording points from
April through August 2017 shows a strong seasonal peak in
calling in late May through early July. A rapid increase in calling
occurs during May, and a more staggered decrease in calling
from mid-July through mid-August. Dotted lines indicate the
ARU dates (25 May–10 July) used for comparison with
traditional surveys conducted in June.
 

Our timed trials indicated that, on average, it took an analyst 1 min,
34 sec (median 1:20, range 0:31–5:04) to select bobwhite calls within
a 5-min recording. The average difference in number of calls
detected between the timed re-analysis and the original analysis
was 0.33 calls per file, with 95% showing no difference in occupancy
status.

Comparison of Autonomous and Traditional Surveys
When we compared raw occupancy results from individual surveys
(658 ARU and 28 traditional) at the same 14 points, we found no
significant difference between the two methods (t = -1.26, df =
29.92, p = 0.22). However, when point occupancy after multiple
surveys is considered, the ARU method produced a higher number

of occupied points. Birds were detected by ARU at 13 of the 14
points (Table 1). At the five points where birds were detected by
traditional surveys, they were also detected by ARUs. The two
methods agreed on raw occupancy status at six points (Table 1).
At the remaining eight, the ARU method located calling, whereas
no birds were detected using the traditional method. The average
probability of encountering at least one bird per point over the
course of a season using our traditional method was 0.36, whereas
the probability using our more survey-intensive ARU method was
0.93 (Table 1). A Wilcoxon signed rank test, with observations
paired by point, indicates that birds are significantly more likely
to be detected using our ARU method than our traditional
method (V = 0, p = 0.006). When we performed a similar paired
Wilcoxon signed rank test using average point-based encounter
rates, to account for differences in survey effort, we again found
no significant difference between the methods (V = 26, p = 0.18).
The mean point-based encounter rate was 0.32 (range 0.00–0.51)
for ARUs, and 0.21 (range 0.00–1.00, Table 1) for traditional
surveys.

 Table 1. Occupancy and encounter rates, call totals logged using
autonomous recording units, and individuals counted on
traditional point count surveys for 14 points in South Carolina
during 2017 show that both methods consistently detected
bobwhites. Traditional surveys were able to estimate numbers of
individuals per point, whereas ARU surveys provide a measure
of relative calling activity. Methods agreed on bobwhite presence
at six points (42.86%). Encounter rates based on ARU surveys
were slightly higher than rates based on traditional surveys, and
the occupancy rate as estimated by ARU surveys was significantly
higher (92.86%) than the rate estimated by traditional surveys
(35.71%).
 
Site-Point Traditional

raw occ.
ARU 

raw occ.
Traditional
encounter

rate

ARU
encounter

rate

Traditional 
min #

individuals

ARU
# calls

IC-F1 0 1 0.0 0.32 0 250
IC-F5 0 1 0.0 0.26 0 346
IC-F7 1 1 0.5 0.47 1 671
IC-F8 0 1 0.0 0.45 0 688
IC-F9 0 0 0.0 0.00 0 0†

IC-R2 0 1 0.0 0.38 0 364
IC-R4 1 1 0.5 0.51 1 1257
IC-R6 0 1 0.0 0.09 0 101
IC-R8 0 1 0.0 0.15 0 132
IC-R11 0 1 0.0 0.23 0 395
IC-R12 0 1 0.0 0.51 0 379
CS-F1 1 1 0.5 0.11 2 87
CS-F4 1 1 1.0 0.45 1 540
CS-F12 1 1 0.5 0.51 2 677
Totals: 5 13 - - 7 5887
Avg. rate: 0.36 0.93 0.21 0.32 - -
† Microphone function at IC-F9 was normal based on presence of calls from
non-target species.

Of the 28 sets of surveys that occurred at the same place and time,
both methods returned six detections for equal encounter rates
of 0.21. However, survey sets did not agree on which points were
occupied on which days. Only four survey occasions had a 5-min
traditional survey that occurred fully within a 15-min ARU
recording. Of these occasions, three agreed, with neither in-person
observers nor ARU analysis detecting any birds. On one occasion,
a bobwhite call was found by the ARU method but was not
simultaneously detected by the observer in the field.  
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Points varied in calling activity from no calls to 1,125 calls per
point, with an overall total of 5,887 calls detected by ARUs. The
mean number of birds detected per point on in-person surveys
was 0.50 (range 0–2) birds (Table 1). There was no significant
difference in the number of calls detected by ARUs at points where
no birds were detected on in-person surveys and at points where
one or more birds were detected (t = -1.92, df = 4.63, p = 0.12).
However, at points where traditional surveys detected one or more
birds, the mean count of calls from ARUs was higher, (mean
510.00) than the mean at points without birds (mean 210.22).

Random Forest Model Results (Traditional Surveys)
For traditional surveys, random forest models were relatively poor
at predicting actual survey outcomes, however, our main interest
was in relative importance of survey variables. Patterns emerged
indicating that point-based variables, survey timing, and observer
were most important. The top ranked model includes point
identity, survey start time, and day of year. The top model has
the best mean square error (MSE = 0.46), the highest percentage
correct (54.17%), and the highest specificity (0.60) in the model
set but has low sensitivity (0.25) (Table 2). The second and third
models (id+obs and id+site) are interchangeable and are
competitive with the top model within 1.49 AICc. Site and
observer were highly correlated, as each observer surveyed at only
one site. The second ranked models have slightly worse MSE
(0.54), lower percentage correct (45.83%), and lower specificity
(0.40), but much higher sensitivity (0.75) (Table 2). The top model
maximizes the ability to classify negative detections, whereas the
secondary models maximize the ability to classify positive
detections. Point identity is in all three models and contributes
the most to within-model mean decrease in error (MDE). This is
to be expected as it accounts for the unmodeled differences in
habitat.  

In the top model, point identity contributes 10.45 toward MDE,
survey day contributes 6.71, and survey start time contributes
3.54. A partial dependence plot for survey day of year shows that
surveys taking place earlier in the June survey window have a
higher relative probability of detecting birds, with the probability
declining most steeply around 28 June (Fig. 3a). A partial
dependence plot for survey time indicates that surveys conducted
at least 50 min after sunrise have a higher relative probability of
detecting birds, with a slight decrease in probability of detection
around 135 min (ca. 2.5 h) after sunrise (Fig. 3b).  

In the competitive id+obs and id+site models, point identity
contributes 20.48 and 19.38, respectively, toward MDE. Observer
contributes 8.96, and site contributes a similar 7.93. The Carolina
Sandhills site had a higher relative probability of bird detection
than the Indian Creek site (Fig. 4a). Observers A and B, who
surveyed at Carolina Sandhills had a higher relative chance of
detecting birds than observer C, who surveyed at Indian Creek
site, although there is overlap in range between observers B and
C, who conducted most surveys (Fig. 4b).

Random Forest Model Results (ARU Surveys)
Random forest models for ARU surveys had better fit and better
predictive ability than models for traditional surveys. Fit,
accuracy, and specificity were moderate, and sensitivity was high
(Table 3). Models also provided a clear pattern of variable
importance. There was only one top ARU model, including point

 Table 2. Traditional survey variables assessed in the full random
forest model set included point identity (id), survey start time
(time), day of year (day), observer (obs), site type (site), windspeed
ranking (wind), percent cloud cover, and noise ranking. The top
model is id+time+day. The id+obs or id+site models are
interchangeable and competitive within delta 2 AICc. Mean
square error is relatively poor throughout the set, and model
accuracy (percent correct) is generally average. Ability to classify
true positives (sensitivity) and ability to classify true negatives
(specificity) tend to trade off, so a model with high sensitivity
generally has lower specificity.
 
Model k MSE

fit
Percent
correct

Sensiti
vity

Specifi
city

AICc Delta
AICc

id+time+day 3 0.46 54.17 0.25 0.60 64.45 0.00
id+obs 2 0.54 45.83 0.75 0.40 65.94 1.49
id+site 2 0.54 45.83 0.75 0.40 65.94 1.49
id+obs+wind 3 0.54 45.83 0.75 0.40 68.46 4.01
id+time+day+site 4 0.50 50.00 0.25 0.55 69.32 4.87
id+day 2 0.67 33.33 0.75 0.25 70.92 6.47
id+time+day+wind+
site

5 0.50 50.00 0.25 0.55 72.42 7.97

id+time+day+wind+
obs

5 0.50 50.00 0.75 0.45 72.42 7.97

id+obs+wind+day 4 0.58 41.67 0.75 0.35 73.02 8.57
Full_A (with site†) 7 0.46 54.17 0.25 0.60 77.67 13.23
Full_B (with obs†) 7 0.54 45.83 0.75 0.40 81.68 17.23
† Observer and site were highly correlated—model A includes site, and
model B includes observer.

identity and survey day of year. The top model has the best MSE
(0.30), the highest percentage correct (69.51%), the highest
specificity (0.63), and good sensitivity (0.85) (Table 3). Point
identity again contributes the most toward MDE within
individual models.  

Within the top model, point identity contributed 44.97 toward
MDE, whereas day of year contributed 23.95. As expected,
different points have different relative probabilities of detection.
The partial plot for survey day of year shows that surveys taking
place between approximately 26 May–20 June (days 145–170)
have a higher and more consistent relative probability of detecting
birds than surveys outside this window (Fig. 5).

DISCUSSION

Practicality of Autonomous Recorder Surveys
Overall, ARUs were reliable, with no malfunctions, and produced
a high proportion of good-quality recordings. For bobwhite
detection at our sites, a moderate amount of background noise
was not problematic, and only rain consistently caused poor
recording quality. Much like the restrictions placed on traditional
surveys, poor-quality recordings, or those from days with adverse
weather conditions, could be removed from an ARU analysis. The
time required to process a 5-min section of recorded data averaged
only 1 min, 34 sec, considerably less than the 5 min required to
do the survey in person plus the additional time needed to move
between points. As we could conduct at least three ARU surveys
for every in-person survey, ARUs would be helpful for increasing
survey effort.
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 Fig. 3. The partial dependence plots for day of year (a) and start time (b) within the top-ranking random forest model shows that the
model is more likely to predict bobwhites on traditional surveys earlier in the June survey window and on surveys beginning at least 50
min after sunrise. The highest relative detection probabilities occur closest to day 165 (15 June) and around 100 min after sunrise.
Relative probability of detection represents the relative logit contribution of the variable to the model’s probability of classifying an
occasion as a detection.
 

Pros and Cons of Autonomous and Traditional Surveys
Our data suggest that a point count or recording session should
probably be longer than the 5-min counts commonly used in roadside
transects and currently recommended by the NBCI (Elder 1956,
Rollins et al. 2005, Morgan et al. 2016). On average, recording for
only 5 min would result in detecting occupancy at less than half  of
points found to be occupied using a 15-min ARU survey. A 5-min
in-person survey might also be expected to detect fewer than half  of
occupied points on a given day. As birds react to human presence
and take time to return to normal calling behavior, two or three 5-
min surveys over multiple days may not be an equivalent effort to
one 10- or 15-min ARU survey (Shonfield and Bayne 2017). Use of
ARUs can increase survey effort by increasing the number of days
surveyed and the length of each survey as well as removing the
constraints of covering many points within a short time.  

The peak calling season observed in our ARU data is similar to the
mid-June to July peaks observed in research conducted in Missouri,
Kansas, Oklahoma, Georgia, and Florida (Bennitt 1951, Robel et al.
1969, Wilson 2000, Hansen and Guthery 2001, Terhune et al. 2009).
Our study, like several others, shows a later secondary calling peak
(Robel et al. 1969, Hansen and Guthery 2001, Terhune et al. 2009).
If  calling is associated primarily with breeding and nesting, the
highest calling rates should correspond to peak breeding season
(Speak and Haugun 1960, Terhune et al. 2009). The secondary calling
observed in July could be a result of birds re-nesting after a failed
attempt or producing a second brood (Sermons and Speake 1987,
Terhune et al. 2009). The peak calling season, according to ARU
data, occurs during the June survey window used for traditional
surveys. Calling season, however, may vary from year to year.
Researchers in several regions have concluded that variation in site,
year, and weather had an impact on breeding, call timing, and
behavior (Speake and Haugen 1960, Wilson 2000, Hansen and
Guthery 2001, Terhune et at. 2009). There is also evidence for changes
in bird breeding phenology based on long-term climate change
(Forchhammer et al. 1998, Parmesan and Yohe 2003, Charmantier
and Gienapp 2014). Using ARU surveys that extend to the edges of
the calling season would ensure that peak season data are captured
every year and could be used to track shifts in breeding season timing.

On a point-by-point basis throughout the year, the ARU method
outperforms the traditional method by finding birds at 57% more
survey points. On a survey-by-survey basis, however, when the
same number of surveys on the same days of the year are
compared, both methods provide similar results. Both methods
had the same number of detection occasions and had equal
encounter rates of 0.21, but daily comparisons did not agree on
which points were occupied on which days. On any given day, the
probability of detecting a bird at a point is low, so when survey
times do not match exactly, we would not necessarily expect equal
results. The combination of similar success rate of individual
surveys, higher success rate of ARUs throughout the season, and
low encounter rate suggests that the difference in seasonal results
between methods is primarily due to the larger number of repeated
surveys possible with the ARU method.  

Traditional surveys allow for more direct estimation of bobwhite
abundance as it is possible for observers to identify several birds
calling simultaneously. The number of birds estimated on
traditional point counts was low, ranging from zero to two. This
means the occupancy rate may not differ drastically from
abundance. Additionally, for easily detectable species, encounter
rate closely approximates actual occupancy (Strimas-Mackey et
al. 2020). Based on their loud and identifiable call, it is possible
that encounter rates for bobwhite do closely reflect occupancy
and abundance. In our results, sites where at least one bird was
detected by a traditional survey did not have significantly more
ARU calls than sites only found to be occupied by ARU surveys.
However, each ARU season consisted of 47 survey replicates,
whereas each in-person season consisted of only two. If  birds are
not calling reliably within the 5-min in-person surveys, this could
easily confound results. Further study into the relationship
between occupancy and abundance for bobwhites is needed.

Random Forest Model Interpretation
Random forest models indicated that for both traditional and
ARU surveys, the point identity was most important in modeling
relative probability of encountering bobwhites. This suggests that,
regardless of survey type, habitat variables are the main drivers
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 Fig. 4. Plots of the influence of site (a) and observer (b) on the relative probability of detecting bobwhites on traditional surveys
show that detection was generally higher and with a narrower range of probabilities at Carolina Sandhills (CS) than at Indian Creek
(IC) and that observers varied in relative probability and in range of probability. The patterns for site and observer are similar
because the two variables are highly correlated. Observers A and B surveyed only at Carolina Sandhills, and observer C surveyed
only at Indian Creek. Relative probability of detection represents the relative logit contribution of the variable to the model’s
probability of classifying an occasion as a detection.
 

 Table 3. Variables for autonomous recording unit surveys as
assessed in the full random forest model set included point identity
(id), day of year (day), site type (site), recording quality (quality),
average wind speed (wind), cloud cover conditions, and average
rainfall. Based on statistics presented, the top and only
competitive model is id+day. Mean standard error is similar
throughout the set, and model accuracy (percent correct) is
generally just above 50%. The ability to classify true positives
(sensitivity) is high, and ability to classify true negatives
(specificity) is average. The top model balances high sensitivity
with moderate specificity.
 
Model k MSE

fit
Percent
correct

Sensit
ivity

Specif
icity

AICc Delta
AICc

id+day 2 0.30 69.51 0.85 0.63 645.62 0.00
id+day+site+quality 4 0.31 68.90 0.87 0.62 653.02 7.40
Full Model 7 0.32 68.29 0.81 0.64 662.63 17.01
id+day+site+
quality+wind

5 0.33 67.07 0.74 0.64 664.51 18.89

id+day+site 3 0.35 65.24 0.83 0.58 669.17 23.55
id+quality 2 0.36 64.02 0.81 0.57 672.77 27.14
id+site+quality 3 0.38 62.20 0.83 0.53 682.96 37.34
id+site 2 0.41 59.15 0.83 0.50 693.62 48.00

of encounter rate. Variables having to do with weather conditions
and other survey-based variables were less important than point-
based variables in final models. Although it would be better to
use weather data from a closer station for ARU models, Pearson
tests showed slight correlation between greater precipitation at
the weather station and severity of rain heard on recordings (r =
0.305, df = 2009, p < 0.00) and between higher windspeed at the
weather station and lower recording quality (r = -0.17, df = 2009,
p < 0.00). Weather variables from in-person surveys were taken
directly at the time of the survey and were also unimportant in
top models. It is likely that point occupancy rather than survey-
based detectability is the primary driver of encounter rate. In
traditional surveys, site type was also an important modeling

 Fig. 5. The partial dependence plot for day of year within the
top-ranking ARU random forest model shows that the model is
more likely to predict bobwhites on surveys in late May to mid-
June. Day 150 is 31 May, and day 190 is 10 July. The relative
probability of detection represents the relative logit
contribution of the day of year variable to the model’s
probability of classifying an occasion as a detection.
 

variable. However, site and observer were related, so it is difficult
to determine if  site type, observer ability, observer bias, or a
combination affected encounter probability. In ARU models, we
eliminated observer bias by using the same recording units and
having a single observer analyze all data. Site type was not
important in ARU models.  

Survey timing was important to traditional surveys. Results
showed that relative probability of encounter rate increased about
50 min after sunrise and started to decline about 2.5 h after sunrise.
This suggests that it may be necessary to adjust the current
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protocol in which surveys begin at sunrise and to narrow the 3-h
time window. The ARU method allows for all surveys to occur at
the same time so it can maximize effort at the optimal time. We
examined ARU data from 30–45 min post sunrise, which is slightly
before peak detection, so timing of future ARU studies could also
be adjusted. In both traditional and ARU models, survey day of
year was an important factor. Traditional surveys were limited to
June, but relative probability of encountering birds decreased
throughout the month, and sharply toward the end. Automated
recording unit surveys analyzed were limited to 25 May–10 July
based on the peak season from the entire data set. Surveys
conducted in late May to mid-June had higher and more
consistent relative probabilities of encounter than those earlier in
May or in late June or July. Both methods agree that the best
survey dates for our region of South Carolina are from early to
mid-June. However, the actual study period should likely extend
beyond this time period.

CONCLUSIONS
Automated recording units and human observers are both able
to detect presence of bobwhites on individual surveys with similar
results. The increased number of replicates possible with ARUs
allows for significantly better estimates of occupancy, whereas
traditional surveys allow for estimation of abundance. Both
methods could be combined into a powerful bobwhite monitoring
program.  

There are many advantages to ARU use, including the ability to
survey more points, for longer surveys, and over a longer season.
As analysis of ARU data takes less time than a comparable in-
person survey, monitoring efforts could be expanded without
adding personnel or hours. Automated recording unit surveys are
also able to eliminate most survey-based variation in detectability.
Whereas observer, survey day of year and survey start time are
important for traditional surveys, ARUs eliminate observer
differences and ensure that all surveys occur at the same times.
We also found ARU recordings to be a practical way to track
seasonal calling patterns, which would be ideal for tracking long-
term changes in calling phenology.  

As it is difficult to estimate counts of birds with ARUs, they are
best deployed for presence/absence surveys. They could easily be
used to determine occupancy of marginal sites where bobwhites
are not known to occur, or where populations are known to be
lower. Current efforts focus on relatively small areas within high
priority focal sites, generally with higher occupancy. Automated
recording units could be used to expand the survey zone and to
target new areas for study or habitat management. Traditional
methods could be incorporated to conduct abundance and habitat
surveys at sites of interest. New analytical methods under
development are improving the ability to automate the ARU call
identification process and are on the verge of making it possible
to use call counts to model population size. Such advances would
allow the ARU technique to be viable as a lone-use method.
However, for now, we recommend ARU use as a supplemental
method for expanding the spatial and temporal range of
traditional bobwhite monitoring.
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