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The strength of migratory connectivity in Painted Buntings is spatial scale
dependent and shaped by molting behavior
Andrew J. Sharp 1  , Andrea Contina 2  , Viviana Ruiz-Gutiérrez 3, T. Scott Sillett 4  , Eli S. Bridge 5  , Elizabeth M. Besozzi 
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ABSTRACT. As migratory species move through the stages of their annual cycle, individuals often display variation in the degree to
which they remain in proximity to one another, a phenomenon called migratory connectivity. We show scale dependence in the strength
of migratory connectivity in Painted Buntings (Passerina ciris), a North American passerine with disjunct eastern and interior breeding
populations. Based on light-level geolocator data from 112 individuals at 11 breeding sites, migratory connectivity between breeding
and wintering grounds was strong at the range-wide scale, with interior and eastern Painted Buntings remaining separated throughout
the annual cycle. Conversely, migratory connectivity within the eastern and interior populations was weak, with individuals from
different breeding areas mixing extensively on winter quarters. We found weak migratory connectivity within populations as birds
moved from the breeding grounds to the wintering grounds (breeding-to-winter), with individuals from different regions of each
population mixing extensively on the wintering grounds. The interior population, however, displayed strong migratory connectivity as
birds moved from the breeding grounds to the intermediate molting grounds (breeding-to-molting), with birds from different breeding
sites showing contrasting migratory strategies during the molting period. Our results suggest that spatial scale dependence of migratory
connectivity is likely to be a pervasive phenomenon, given that migratory routes and the likelihood of molt migration often differ
among populations. When possible, researchers should be deliberate about the spatial design of tracking studies to reduce potential
biases that can result from spatial scale-dependent migratory connectivity.
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INTRODUCTION
Populations of migratory species move annually between areas
used during breeding, molting, and wintering (Alerstam and
Bäckman 2018). Migratory connectivity describes the extent to
which individuals from a given population remain together as
they move between phases of the annual cycle (Webster et al.
2002). Migratory connectivity is considered “strong” when
individuals that are spatially associated during one period of the
annual cycle (e.g., breeding) remain close together during other
periods of the annual cycle (e.g., non-breeding), and is further
strengthened if  interpopulation mixing is low (Finch et al. 2017).
In contrast, migratory connectivity is weakened when sympatric
individuals in one stationary period of the annual cycle are
allopatric in another stationary period and/or mix with
individuals from other regions when transitioning from one
stationary period to the next. Weak migratory connectivity, where
individuals from different breeding populations overlap on the
wintering grounds, appears to be common for migratory
songbirds (Finch et al. 2017).  

Understanding the extent to which breeding populations are
connected to specific non-breeding and stopover areas can be
critical to the conservation of migratory species, which experience
different conditions and risks as they move among breeding and
non-breeding areas throughout their annual cycles (Marra et al.
2015, Cooper et al. 2017). Quantifying the linkages among
breeding and non-breeding regions is also necessary for inferring
connections between demographic trends observed on the
breeding ground and conditions on the non-breeding ground

(Rushing et al. 2016, Taylor and Stutchbury 2016, Kramer et al.
2018, Hallworth et al. 2021). Despite its importance, migratory
connectivity is poorly studied for most species, and when it has
been studied, is often derived from sampling that is limited in its
spatial scale or coverage of the annual cycle (but see Knight et al.
2018, 2021; Kramer et al. 2018, Skinner et al. 2022). For example,
migratory connectivity studies based on band recoveries are
frequently based on only two locations per individual: a single
location from the breeding ground and a single location from the
non-breeding season (Brown and Miller 2016, Moore and
Krementz 2017). This approach precludes potentially significant
conclusions about migratory connectivity at intermediate stages,
such as migration or stopover (Hewson et al. 2016). Additionally,
for many migratory species, band recovery rates are extremely low
and samples sizes are insufficient for estimating migratory
connectivity, even after decades of banding effort. The logistical
limitations of tracking technology (expense, difficulty of
recovering archival devices) also constrain the spatial scale of
many studies, such that the available data represent only a limited
portion of the species-wide breeding range (Siegel et al. 2016,
Witynski and Bonter 2018, Burgess et al. 2020). Detailed accounts
of spatial and temporal variation in migratory connectivity are
therefore missing for many species (McKinnon and Love 2018).  

One such species is the Painted Bunting (Passerina ciris), a small
(~16 g), short- to medium-distance migrant and species of
conservation concern (U.S. Fish and Wildlife Service 2008).
Painted Buntings exist in two allopatric breeding populations
separated by a 500-km gap within which there are only sparse and
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sporadic breeding records (Fig. 1) (Gilbert et al. 2019). The
eastern population breeds within 15 km of the Atlantic Ocean
from southern North Carolina to northern Florida and in the
Piedmont region of central South Carolina and Georgia. The
interior population breeds in Texas east to Mississippi, north into
Kansas, and southwest into northern Mexico. The interior
population contains approximately 60 times more individuals and
occupies an area approximately 25 times larger than that of the
eastern population (Sykes and Holzman 2005, Fink et al. 2021).
Both populations have declined in abundance since 1970, but the
eastern population has declined at a steeper rate (Sauer et al.
2013).

 Fig. 1. Deployment locations (circles) and estimated wintering
locations for eastern (red, n = 82) and interior (blue, n = 10)
Painted Buntings. The raster surfaces represent the overlap of
each individual’s 95% density surface. The intensity of the color
ramp increases with the number of overlapping density surfaces
in that area (interior maximum value = 5, eastern maximum
value = 30). The breeding range is shaded dark gray.
 

Painted Buntings also show complex variation in molting and
migration strategies across their breeding range. Eastern Painted
Buntings molt at the end of the breeding season (definitive
prebasic molt) before beginning fall migration (Thompson 1991).
In contrast, the interior population appears to molt at locations
intermediate to their breeding and wintering areas (i.e., stopover
molt migration) (Rohwer et al. 2005, Tonra and Reudink 2018).
We do not know if  all interior Painted Buntings are molt-migrants
or if  this strategy is undertaken only by individuals that breed in
the most arid regions of the breeding range (Bridge et al. 2016,
Pageau et al. 2020).  

We used tracking data from archival light-level geolocators to test
the hypothesis that the complex breeding distribution and
variation in molting behavior would affect the strength of
migratory connectivity in Painted Buntings at multiple spatial
scales and at different stages of the annual cycle. Previous tracking
studies have focused either solely on the eastern population

(Rushing et al. 2021) or on a single breeding site of the interior
population (Contina et al. 2013). Specifically, we estimated (1)
range-wide breeding-to-winter migratory connectivity, (2)
breeding-to-molt migratory connectivity within the interior
population, and (3) breeding-to-winter migratory connectivity
within both the eastern and interior populations. We predicted
that the geographic distance between the disjunct breeding
grounds and the Gulf of Mexico would promote strong range-
wide breeding-to-winter migratory connectivity between
populations. Given the limited area where interior buntings have
been observed molting, we predicted that buntings from the
interior population would mix extensively during molt, which
would lead to weak breeding-to-molt migratory connectivity. We
also predicted that the relatively small winter range of the eastern
population (Rushing et al. 2021) would lead to weak breeding-to-
winter migratory connectivity (Finch et al. 2017). Finally, we
predicted that the comparatively larger winter range of the
interior population (Battey et al. 2017) would be associated with
stronger breeding-to-winter connectivity than that of the eastern
population.

METHODS

Geolocator deployment and data analysis
We deployed light-level geolocators (hereafter “geolocators”) at
11 sites across the Painted Bunting’s breeding range. During the
summers of 2017, 2018, and 2019, we deployed 295 geolocators
(stalked model P50Z11-7-DIP, Migrate Technology Ltd, Coton,
Cambridge, UK) on eastern Painted Buntings at nine sites (Table
1, Fig. 1; see Appendix 1 for detailed site information). In the first
two years, we attempted to put tags only on after-second-year
(ASY) males, which are easily identifiable by their characteristic
colorful plumage (Thompson 1991). In cases where we could not
capture enough ASY males, the remaining tags were deployed on
second-year (SY) males (n = 12). In 2019, we put approximately
half  (47/100) of the geolocators on ASY females, and the
remainder on ASY males. Despite their lack of bright plumage,
females are readily aged via patterns of molt in the primary coverts
(Pyle 1997). Birds were captured using mist nets and hanging wire
traps. Geolocators were attached with leg-loop harnesses
(Rappole and Tipton 1991) made with elastic jewelry cord, and
were secured with crimp beads. Within the interior population,
we deployed 215 geolocators in Oklahoma during the summers
of 2010, 2011, and 2012 as part of a separate study (Table 1) (see
Contina et al. 2013 for field methods) and 14 geolocators in
Arkansas during summer 2018. The tracking results from a subset
(19/28) of our Oklahoma birds were previously used by Contina
et al. (2013, 2016) to study genes that may be responsible for
migratory behavior, as well the relationship between migration
and isotope patterns.

Geolocator analysis
Geolocator data consisted of light levels recorded at
predetermined intervals for the duration of the tag’s battery life
(eastern: range = 310–398 days, median = 364 days; interior: range
= 45–324 days, median = 115 days). We used the R package SGAT
(Wotherspoon et al. 2013) to generate location estimates from the
raw light data (see Appendix 1 for details on geolocator analysis).
Twilights were identified using the function “preprocessLight”,
which is part of the R package TwGeos (Wotherspoon et al. 2016).
We used SGAT to determine appropriate zenith angles for each
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bird during the stationary breeding period when individuals were
at known locations. For eastern birds, the breeding stationary
period was defined as 1 June to 1 August. The wintering stationary
period was defined as 1 December to 1 February. For interior
birds, the stationary breeding period began when the geolocator
was deployed and ended when the individual departed the
breeding ground. This flexible time frame was necessary because
some interior birds had already reached the molting ground and
the recording of locations had stopped before others had received
their geolocator on the breeding ground. We defined departure
as the first significant (> 2 degrees) and permanent longitudinal
movement away from a known stationary location (see Appendix
1 for more details). To determine appropriate zenith angles at
times of the year when location was unknown (the nonbreeding
season), we used the Hill-Ekstrom calibration method (Lisovski
et al. 2012, 2020), which works on the principle that the true zenith
angle should result in the smallest variation in estimated latitudes.
To reduce uncertainty in the estimated locations, we incorporated
a range mask as a prior to disallow stationary locations over water
or outside the known range of the Painted Bunting (range map
shapefile: Fink et al. 2021). We took a weighted median of the
location density estimate surface (generated using the “slice”
function within SGAT) to generate a point-estimate location for
each individual during the non-breeding stationary period(s). We
used the straight-line distance between these estimated locations
(breeding to molting to wintering) to generate conservative
estimates of migration distance per individual. We used one-way
ANOVA to test for differences in wintering locations (latitude and
longitude) among birds from different breeding sites. For all
ANOVA and t tests, we used α = 0.05 to determine significance.

Table 1. Geolocator deployment/recovery statistics. Geolocators
were excluded from the analysis if  they failed to record viable
data, malfunctioned, or were included in an experimental
treatment.
 
Population State Deployed Recovered (viable data)

Eastern North Carolina 47 9 (8)
Eastern South Carolina 116 34 (32)
Eastern Georgia 67 23 (23)
Eastern Florida 65 20 (19)
Interior Oklahoma 215 53 (28)
Interior Arkansas 14 2 (2)

Total 524 141 (112)

Estimating the strength of migratory connectivity
We used the R package MigConnectivity (Cohen et al. 2018) to
quantify the strength of migratory connectivity between
stationary periods: breeding, molting (interior only), and winter.
Although tracking data cannot prove the occurrence of molt, we
use the term breeding-to-molting connectivity to describe
migratory connectivity during the late summer/early autumn
period when birds would have completed breeding but have not
yet arrived on their final wintering ground. We did not examine
breeding-to-molting migratory connectivity in the eastern
population because eastern Painted Buntings remain on the
breeding ground during this post-breeding period. The “estMC”
function estimates the strength of migratory connectivity (MC)
from geolocator data while accounting for uncertainty in the

estimated locations (Cohen et al. 2018). Values of MC fall between
-1 and 1, although real-world scenarios typically result in an MC
value that falls between 0 and 1 (Cohen et al. 2018). Negative
values indicate a propensity for birds from one region to spread
out away from each other and toward birds from other regions as
they transition from one stationary period to the next. Values near
to 0 indicate that birds from all breeding regions mix uniformly
on the non-breeding ground. Values near to 1 indicate that birds
from individual breeding regions remain clustered together from
one stationary period to the next and remain segregated from
birds from other breeding regions.  

MigConnectivity defines migratory connectivity at the
population level, so that the user must define discrete breeding
and non-breeding regions. For this purpose, we binned the
wintering grounds into five regions: Mexico, Central America,
Florida, Cuba, and the Bahamas. The later three regions were
chosen because they are separated from each other by open water
and thus form natural distinct regions. We chose Mexico and
Central America as wintering regions to divide the western
wintering range into approximately northern and southern halves.
To quantify breeding-to-molting migratory connectivity within
the interior population, we defined two molting regions:
northwest Mexico, and a more eastern region that encompasses
the area between the interior breeding sites and the Gulf of
Mexico. These two regions were chosen to differentiate between
two basic strategies during the molting season: (1) using the
northwest Mexico monsoon region during the molting season, or
(2) using an alternative strategy such as migrating directly to the
wintering ground. MigConnectivity also requires the user to bin
the breeding range into discrete regions. For the interior
population, we used Oklahoma and Arkansas as two discrete
breeding regions. In the eastern population, we binned the
breeding range into three regions by latitude: a northern region
(North Carolina sites), a central region (all South Carolina sites),
and a southern region (Georgia and Florida sites). We examined
range-wide (inter-population) breeding-to-winter migratory
connectivity, breeding-to-molting migratory connectivity within
the interior population, and breeding-to-winter migratory
connectivity within each population (intra-population).  

To improve estimates of migratory connectivity (both breeding-
to-molting and breeding-to-winter), we accounted for differences
in relative abundance between breeding sites in our estimate of
MC (Cohen et al. 2018). Because relative abundance data were
not available for our specific field sites, we divided the breeding
range into polygons, with relative abundance within each polygon
used as the abundance estimate for all breeding sites within that
polygon. The eastern population was divided into three roughly
equal-sized polygons corresponding to the regions described
previously. For Oklahoma and Arkansas breeding sites, relative
abundance was extracted from a rectangle measuring one degree
latitude by one degree longitude around each site. Estimates of
relative abundance in each region were derived from data that are
publicly available from eBird (Fink et al. 2020), using the R
package “ebirdst” (Auer et al. 2019).  

“EstMC” requires a single position (i.e., “centroid”) for each bird
during periods of the annual cycle when birds are in an unknown
location, such as on the wintering or molting ground. For the
wintering centroid, we used the point-estimate generated during
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the core of the wintering period (December and January). For the
molting period (interior population only), the date range used to
calculate the centroid varied by individual due to wide variation
in when individuals arrived on the molting ground. For interior
birds that did not do a prolonged stopover at a distinct molting
location, we used a date range that best represented their behavior
during the post-breeding molting period, such as moving directly
to the wintering ground at the beginning or end of the post-
breeding molting period. To estimate uncertainty in location
estimations derived from light levels, we calculated the mean
difference between known and estimated latitude and longitude
during a window of time when it could be safely assumed that
birds were still on the breeding ground (see Appendix 1 for details).

RESULTS
We recovered 87 of 295 (29%) geolocators from the eastern
population, of which 82 (94%) had viable data (Table 1). Fifty-
five of 229 (24%) geolocators were recovered from the interior
population; 36 (65%) recorded viable data (34 from Oklahoma,
two from Arkansas). We excluded five of the 34 Oklahoma
individuals that were involved in an experimental treatment that
potentially could have affected their migration (Contina et al.
2013). An additional Oklahoma tag was excluded because a
malfunctioning geolocator clock may have resulted in erroneous
locations. Of the remaining 28 Oklahoma tags, 20 collected data
through the post-breeding molting period but stopped recording
data before the bird reached the final winter destination (Table
1). Tags that stopped functioning in late summer while the
individual was still well outside the known wintering range for
Painted Buntings resulted in this classification. Eight Oklahoma
tags and both Arkansas tags recorded data long enough to
estimate the wintering location. All 82 viable geolocators from
the eastern population operated long enough to allow us to
determine wintering locations. Tags were determined to have
operated long enough to allow us to identify wintering location
if  the data showed a distinct movement away from the breeding/
molting ground that resulted in an apparent stationary period
within the known wintering range of the Painted Bunting. Higher
failure rates for the tags deployed on interior birds is attributable
to using an early generation of light-level geolocators.  

Geolocator data revealed a persistent division between the eastern
and interior Painted Bunting populations (Fig. 1). We found no
evidence that interior and eastern birds mix during the stationary
non-breeding periods, which results in strong range-wide
migratory connectivity (MC = 0.71, SE = 0.10) (Table 2). An MC
value < 1 despite perfect separation between the two populations
indicates intra-population mixing from breeding to winter (Cohen
et al. 2018). In contrast, within both the eastern and interior
Painted Bunting populations, we found low breeding-to-winter
migratory connectivity (eastern population MC = -0.05, SE =
0.04; interior population MC = 0.03, SE = 0.22) (Table 2, Figs. 2
and 3). Individuals from all four eastern states (North Carolina,
South Carolina, Georgia, and Florida) occurred in all three major
wintering regions (Florida, the Bahamas, and Cuba). Individuals
from the northernmost breeding site (North Carolina, n = 8)
tended to migrate to the southern portion of the wintering
ground, but an ANOVA test revealed no significant (P < 0.05)
differences in wintering location (latitude and longitude) among
the breeding sites (ANOVA latitude: DF = 7,72, F = 1.95, P =
0.07). However, when grouped by breeding state instead of

Table 2. Estimates of migratory connectivity (MC). Migratory
connectivity can range from -1 to 1. Negative values indicate a
propensity for birds from one region to spread out away from each
other as they transition from one stationary period to the next,
values near to 0 indicate that birds from all breeding regions mix
uniformly during stationary non-breeding periods, and values
near to 1 indicate that birds from individual breeding regions
remain clustered together from one stationary period to the next
and remain segregated from birds from other breeding regions.
 
Population MC estimate Standard error

Range-wide (breeding to winter) 0.71 0.10
Eastern sites (breeding to winter) -0.05 0.04
Interior sites (breeding to winter) 0.03 0.22
Interior sites (breeding to molting) 0.80 0.16

Fig. 2. Estimated wintering locations for eastern Painted
Buntings breeding in North Carolina (NC) (n = 8), South
Carolina (SC) (n = 32), Florida (FL) (n = 19), and Georgia
(GA) (n = 23). The raster surfaces represent the overlap of each
individual’s 95% density surface. The intensity of the color
ramp increases with the number of overlapping density surfaces
in that area (maximum values: NC = 5, SC = 19, GA = 13, FL
= 8).

specific breeding site (all states except for Florida, Oklahoma,
and Arkansas had multiple breeding sites), birds from North
Carolina did winter farther south than birds from South Carolina
or Georgia (ANOVA latitude: DF = 3,76, F = 4.03, P = 0.01). No
significant difference in winter latitude was detected between birds
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Fig. 3. Estimated locations during the post-breeding molting
season (orange) and wintering season (blue) for Oklahoma
(OK) (top panel, molting n = 28, winter n = 8) and Arkansas
(AR) (bottom panel, n = 2) Painted Buntings. The raster
surfaces represent the overlap of each individual’s 95% density
surface. The intensity of the color ramp increases with the
number of overlapping density surfaces in that area (OK
maximum values: molting season = 24, wintering season = 4;
AR maximum value = 1).

from North Carolina and Florida (t test, t = 1.82, DF = 18,47, P 
= 0.09). Birds from the interior population wintered from central
Mexico south to Nicaragua, and there was no significant
difference in wintering location between Arkansas and Oklahoma
birds (ANOVA latitude: DF = 1,6, F = 0.571, P = 0.479).  

Despite weak breeding-to-winter migratory connectivity within
populations, breeding-to-molting migratory connectivity within
the interior population was strong (MC = 0.81, SE = 0.16) (Table
2), indicating that individuals from Arkansas and Oklahoma
remained segregated during the post-breeding molting period.

During the post-breeding period, all Oklahoma breeders
migrated to northwestern Mexico, a known molting region for
western molt-migrants (Pyle et al. 2009). One Arkansas bird
stayed within the breeding region during the post-breeding
molting period before migrating around the Gulf of Mexico en
route to its wintering ground in southern Mexico/northern
Central America. The second Arkansas bird migrated directly
from its breeding site to overwinter in southern Mexico, making
its way south in short hops along the Gulf Coast.

DISCUSSION
We have shown that, as hypothesized, the strength of migratory
connectivity can vary dramatically within a single species,
depending on the spatial scale of inference and the periods of the
annual cycle during which migratory connectivity is measured.
As predicted, breeding-to-winter migratory connectivity of
Painted Buntings was strong at the range-wide scale, with no
evidence that eastern and interior populations mixed on the non-
breeding grounds. In partial support of our predictions, breeding-
to-winter migratory connectivity within both the eastern and
interior populations was weak, with individuals from different
breeding sites within each population mixing extensively on
wintering grounds. Despite weak breeding-to-winter migratory
connectivity, breeding-to-molting migratory connectivity was
strong in the interior population, contrary to our prediction and
demonstrating the importance of quantifying migratory
connectivity at stages intermediate to breeding and winter (Cohen
et al. 2019). Our results suggest that differences in molting strategy
may drive strong breeding-to-molting migratory connectivity in
molt-migrants like the Painted Bunting, but also that this strong
migratory connectivity does not necessarily persist into the
stationary wintering season. These results align with recent
theoretical research that has examined the effect of spatial
sampling design on estimates of migratory connectivity (Vickers
et al. 2021).  

Our results also highlight the need to consider how patterns of
migratory connectivity change throughout the annual cycle.
Despite weak breeding-to-winter migratory connectivity within
the interior population, individuals breeding in Oklahoma and
Arkansas diverged in migratory behavior following the breeding
season, which resulted in strong migratory connectivity during
the molting period. Although our study was not designed to
quantify molting behavior per se, banding and stable isotope
studies have confirmed that northwest Mexico is an important
molting region for multiple molt-migrant species, including
Painted Buntings (Rohwer et al. 2005, Pyle et al. 2009, Rohwer
2013). Conversely, our limited results from Arkansas suggest that
buntings there molt on their breeding grounds like the eastern
population. Our results also suggest that molting behavior had
profound implications on migratory distance. On average,
individuals from Oklahoma (n = 8) traveled nearly 1500 km
farther than Arkansas birds (n = 2) to reach the wintering ground,
and more than 2500 km farther than birds from the eastern
population. This sizable difference in migratory distance provides
support for the hypothesis that morphological differences
observed in Painted Buntings (increasing wing length moving
from east to west) are selected for and maintained by a divergence
in migratory behavior during the non-breeding period (Battey et
al. 2017). Despite differences in molting behavior, birds from
Oklahoma and Arkansas do not appear to occupy different
regions of the wintering range.  

https://journal.afonet.org/vol94/iss1/art7/


Journal of Field Ornithology 94(1): 7
https://journal.afonet.org/vol94/iss1/art7/

Contrasting molting behavior between Oklahoma and Arkansas
birds could reflect differences in both midsummer climate at these
locations and genetics. Painted Buntings in the western portion
of the breeding range experience an increasingly arid landscape
by midsummer, whereas the more eastern breeding regions remain
green and productive later into the summer and fall. Thus, molt-
migration to the monsoonal regions of western Mexico is likely
adaptive for interior Painted Buntings breeding in more arid
regions. The westernmost breeding buntings may also be
following ancestral routes of range expansion of the Passerina 
clade (Ruegg and Smith 2002, Shipley et al. 2013). Moreover, two
genetically distinct groups exist within the interior population and
one within the eastern population (Herr et al. 2011, Battey et al.
2017, Contina et al. 2019a, b). Thorough sampling across the
breeding range, particularly in Arkansas (n = 2 individuals in this
study), Louisiana, and Mississippi will improve our
understanding of how climate and genetics interact to affect molt
behavior and susceptibility of Painted Buntings to ongoing
environmental change (Sykes et al. 2007, Contina et al. 2016,
2019a; Battey et al. 2017).  

The scale-dependent strength of migratory connectivity in
Painted Buntings has broader conservation implications. Because
a large portion of the interior population migrates to a relatively
small area to molt, efforts to conserve natural habitat in the
monsoon region of northwest Mexico could have an outsized
benefit to the species. Similarly, habitat destruction and other
negative factors that occur in this region (e.g., illegal trapping)
could be particularly detrimental, and could be a potential culprit
if  interior bunting populations begin to decline more rapidly.
Weak breeding-to-winter migratory connectivity could benefit
the eastern population, which occurs in an area that is 25 times
smaller than that of the interior population, may be declining
faster (Sauer et al. 2013), and faces intense pressure from
development on both breeding and wintering areas (Napton et
al. 2010, Jones et al. 2013). Weak migratory connectivity can help
mediate the effect of habitat loss in one portion of the range,
thereby promoting population resilience, at least in the near-term
(Finch et al. 2017, Rushing et al. 2021). Strong range-wide
migratory connectivity in Painted Buntings suggests that interior
and eastern populations should be managed separately. Without
immigration from the much larger interior population, eastern
Painted Bunting populations do not appear to benefit from any
type of “rescue effect” and are thus completely reliant on this
increasingly fragmented coastal habitat.  

In conclusion, our results emphasize the importance of
considering the scale dependence of migratory connectivity.
Although the Painted Bunting’s allopatric breeding populations
and intraspecific variation in molting strategies appear to be
unusual among North American migratory songbirds, the
existence of population-specific migratory routes (Delmore et al.
2012, Stanley et al. 2015, Kramer et al. 2017) and well-known
gradients in molt migration (Voelker and Rohwer 1998, Pageau
et al. 2020) implies that scale-dependent migratory connectivity
is a pervasive phenomenon. When possible, researchers should be
deliberate about the spatial design of tracking studies to reduce
potential biases that can result from scale-dependent migratory
connectivity (Vickers et al. 2021).
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Appendix 1

Table A1. Names and locations of sites where geolocators were deployed. 

Site State Lat Lon Years geolocators deployed 

Airlie Gardens North Carolina 34.22 -77.83 2017 

Carolina Beach State Park North Carolina 34.05 -77.92 2017 

Bald Head Island North Carolina 33.86 -77.98 2019 

Kiawah Island South Carolina 32.61 -80.02 2017, 2018, 2019 

Spring Island South Carolina 32.35 -80.84 2018, 2019 

Dewees Island South Carolina 32.84 -79.72 2018 

St. Matthews South Carolina 33.69 -80.73 2018 

Little Saint Simons Island Georgia 31.26 -81.30 2017, 2018, 2019 

Little Talbot Island State Park Florida 30.46 -81.41 2017, 2018, 2019 

Wichita Mountains NWR Oklahoma 34.7 -98.7 2011, 2012 

Holla Bend NWR Arkansas 35.16 -93.1 2018 



2 
 

 

 

Geolocator analysis 

The development of miniaturized light-level geolocators has been transformative to the study of 

migratory birds (Stutchbury et al. 2009, McKinnon et al. 2013, McKinnon and Love 2018). Birds 

as small as 7 grams (about the weight of three American pennies) can now be tracked throughout 

their annual migration with a reasonable degree of accuracy. However, the process of analyzing 

and interpreting geolocator data is complex and should be done thoughtfully and transparently, 

especially as it concerns latitudinal movement (Lisovski et al. 2018). The following analysis 

draws heavily from Lisovski et al., 2020 (Lisovski et al. 2020) and the online manual that 

accompanies it.  

Raw geolocator (Eastern population: stalked model P50Z11-7-DIP, Migrate Technology Ltd, 

Coton, Cambridge, UK; Interior population: See Contina et al. 2013) data consist of light levels 

recorded at predetermined intervals for the duration of the tag’s battery life. Geolocator analysis 

relies on accurate estimates of twilights (sunrise/sunset). Twilights were identified using the 

function preprocessLight, which is part of the R package TwGeos (Wotherspoon et al. 2016). 

Twilight editing/filtering was done only by automation, with the following parameters: If an 

identified twilight was more than 45 minutes different from the 2 twilights on either side, and 

those 2 twilights were within 25 minutes of each other, the outlier twilight was replaced with the 

median value of the 2 twilights on either side. If the 2 twilights on either side of the outlier were 

not within 25 minutes of each other, the outlier twilight was deleted. This method of geolocator 

analysis requires the user to define light-level thresholds that define transitions between day and 

night. Light-levels above the threshold indicate daytime, light levels below the threshold indicate 

nighttime. We kept the light threshold consistent for all birds within each population unless 

extraordinary shading required threshold adjustment. Adjusting the threshold does not strongly 

affect location estimates unless zenith (sun angle) estimates are not reevaluated using the new 

threshold.  

Analysis of light-level data requires calibration to account for inaccuracies in twilight estimation. 

These inaccuracies can be related to the sensor’s inability to perfectly detect light-levels or by 

shading effects caused by vegetation, topography, or even the feathers adjacent to the sensor. 

The calibration period(s) refers to time periods where the location of the individual is known. In 

this case, calibration starts when the tag is deployed and ends before the individual has left the 

breeding ground. For eastern birds, the calibration period terminated on August 1st, as it is 

extremely unlikely for eastern Buntings to depart the breeding ground prior to this date. For 

interior birds, the stationary breeding period began when the geolocator was deployed and ended 

when the bird departed the breeding ground. This flexible time frame was necessary because 

some interior birds had already reached the molting ground and stopped recording locations 

before others had even received their geolocator on the breeding ground. For individuals whose 

geolocators lasted long enough to record the return to the breeding ground the following spring, 
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we used two calibration periods. The second calibration period started as soon as the bird was 

assured to have returned to the breeding ground and ended when the geolocator stopped 

recording locations. The thresholdCalibration function in R package SGAT creates the threshold 

model by fitting a gamma distribution to the twilight error (minutes) during the calibration period 

(Wotherspoon et al. 2013). The parameters from this model help to inform the model that 

optimizes location estimates later on. The zenith angle that is associated with the median twilight 

error during the calibration period is taken to be the best zenith estimate for the calibration 

period, as that is the zenith angle that results in the average amount of error. One of the most 

difficult steps of geolocator analysis is determining an appropriate zenith angle for time periods 

when the bird is at an unknown location (away from the breeding ground, in this case). Adjusting 

zenith angles will drastically change estimates of latitude. There is some precedent for using a 

constant zenith angle for the duration of the track, but we (and others) found that using a zenith 

calibrated for the breeding ground did not result in realistic location estimates on the non-

breeding ground (Cooper et al. 2017). To determine appropriate zenith angles at times of the year 

when location is unknown (e.g., the nonbreeding season), we used the Hill-Ekstrom calibration 

method (HEC) (Lisovski et al. 2012, 2020), which works on the principle that the true zenith 

angle should result in the smallest variation in estimated latitudes. We attempted to be as 

methodical as possible in how we implemented this method by using the same window 

(December 1st- March 15th) for each bird. Even so, this method occasionally returned spurious 

zenith estimates.  

We specified a gamma-distributed movement model with parameters that assume most 

movements are near-zero distance (stationary periods) but that allow for long-distance 

movements (migration). We specified a location mask to constrain location estimates to the 

known range of the Painted Bunting (Hallworth et al. 2015). The built-in MCMC sampler in 

SGAT uses the initial crude locations generated from recorded light-levels, the land mask, and 

the prior distributions from the threshold model and the movement model to simulate thousands 

of tracks (Sumner et al. 2009). For each time point, the mean location estimate from all iterations 

is taken to be the best location estimate. For visualization of non-breeding locations, we created a 

location density layer from the posterior distribution from each individual using the slices 

function within SGAT.  

Estimates of latitude derived from light-level tags can have considerable uncertainty (>100 km) 

under certain conditions. During the equinox periods, which can last up to 30 days on either side 

of the fall and spring equinox, estimates of latitude are unreliable due to the lack of latitudinal 

variation in day length during this period. Unfortunately, this often coincides with migration, 

such that only longitudinal movements can be inferred. Naturally, this can make determining 

dates of arrival/departure using geolocator data difficult. We defined departure as a significant 

(>2 degrees) longitudinal movement away from a known stationary location. To determine 

arrival, we looked for longitude to stabilize during a stationary period, and then tracked 

backwards until longitude moved significantly (>2 degrees) away. We only assigned arrival/ 

departure dates for individuals whose movements allowed confident determination of 

arrival/departure. Some individuals had such little longitudinal movement or migrated such short 

distances that assigning arrival or departure dates was not feasible or appropriate.  
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Accurate time keeping is critical to geolocator analysis. If the clock onboard the geolocator 

speeds up or slows down, estimates of longitude will become increasingly biased as the clock 

drift accumulates. Clock drift is apparent if longitudinal estimates of known locations (breeding 

ground) are accurate when the geolocator is deployed, but have shifted east or west by the time 

the bird returns the following spring. Most of our geolocators showed no sign of clock drift. For 

the < 5 tags that showed evidence of clock drift, we used the following method to correct the bias 

(assumes rate of drift is constant through time):  

1. Determine total amount of clock drift in seconds (ΔT) 

1. ΔT = (Fall Breeding Longitude - Spring Breeding Longitude) * 300 seconds 

2. For each recorded date time at time step i, add (or subtract, depending on direction of 

clock drift) a portion of ΔT proportional to how far along that time step is in the data set 

1. Corrected Timei = Biased Timei + (ΔT * (i/ total number of time steps))  

2. The result of this method is that very little correction is added to date-times early 

on in the dataset, because very little clock drift has accumulated. By the final time 

step, 100% of the total clock drift is added.  

 

Literature Cited 

Contina, A., E.S. Bridge, N.E. Seavy, J.M. Duckles and J.F. Kelly. 2013. Using Geologgers to 

Investigate Bimodal Isotope Patterns in Painted Buntings (Passerina ciris). The Auk 130: 265–

272. 

Cooper, N.W., M.T. Hallworth and P.P. Marra. 2017. Light-level geolocation reveals wintering 

distribution, migration routes, and primary stopover locations of an endangered long-distance 

migratory songbird. Journal of Avian Biology 48: 209–219. 

Hallworth, M.T., T.S. Sillett, S.L.V. Wilgenburg, K.A. Hobson and P.P. Marra. 2015. Migratory 

connectivity of a Neotropical migratory songbird revealed by archival light-level geolocators. 

Ecological Applications 25: 336–347. 

Lisovski, S., S. Bauer, M. Briedis, S.C. Davidson, K.L. Dhanjal‐Adams, M.T. Hallworth, et al. 

2020. Light-level geolocator analyses: A user’s guide. Journal of Animal Ecology 89: 221–236. 

Lisovski, S., C.M. Hewson, R.H.G. Klaassen, F. Korner‐Nievergelt, M.W. Kristensen and S. 

Hahn. 2012. Geolocation by light: accuracy and precision affected by environmental factors. 

Methods in Ecology and Evolution 3: 603–612. 

Lisovski, S., H. Schmaljohann, E.S. Bridge, S. Bauer, A. Farnsworth, S.A. Gauthreaux, et al. 

2018. Inherent limits of light-level geolocation may lead to over-interpretation. Current Biology 

28: R99–R100. 

McKinnon, E.A., K.C. Fraser and B.J.M. Stutchbury. 2013. New Discoveries in Landbird 

Migration using Geolocators, and a Flight Plan for the Future. The Auk 130: 211–222. Oxford 

Academic. 



5 
 

McKinnon, E.A. and O.P. Love. 2018. Ten years tracking the migrations of small landbirds: 

Lessons learned in the golden age of bio-loggingDiez años siguiendo las migraciones de aves 

terrestres pequeñas: Lecciones aprendidas en la edad de oro de los bio-registrosTracking 

migration in the golden age of bio-logging. The Auk 135: 834–856. Oxford Academic. 

Stutchbury, B.J.M., S.A. Tarof, T. Done, E. Gow, P.M. Kramer, J. Tautin, et al. 2009. Tracking 

Long-Distance Songbird Migration by Using Geolocators. Science 323: 896–896. American 

Association for the Advancement of Science. 

Sumner, M.D., S.J. Wotherspoon and M.A. Hindell. 2009. Bayesian Estimation of Animal 

Movement from Archival and Satellite Tags. PLOS ONE 4: e7324. Public Library of Science. 

Wotherspoon, S.J., Sumner, M.D., and Lisovski, S. 2013. R package SGAT: solar/satellite 

geolocation for animal tracking. GitHub repository. 

Wotherspoon, S.J., Sumner, M.D., and Lisovski, S. (2016). TwGeos: Basic data processing for 

light-level geolocation archival tags. 

 

 


	Title
	Abstract
	Introduction
	Methods
	Geolocator deployment and data analysis
	Geolocator analysis
	Estimating the strength of migratory connectivity

	Results
	Discussion
	Author contributions
	Acknowledgments
	Data availability
	Literature cited
	Figure1
	Figure2
	Figure3
	Table1
	Table2
	Appendix 1

